Exponential stability of the flow for~a~generalized Burgers equation on~a~circle
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 588-598

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the problem of stability for the flow of the $\mathrm{1D}$ Burgers equation on a circle. Using some ideas from the theory of positivity preserving semigroups, we establish the strong contraction in the $L^1$ norm. As a consequence, it is proved that the equation with a bounded external force possesses a unique bounded solution on $\mathbb{R}$, which is exponentially stable in $H^1$ as $t\to+\infty$. In the case of a random external force, we show that the difference between two trajectories goes to zero with probability $1$.
Keywords: Burgers equation, exponential stability, bounded trajectory.
@article{CMFD_2023_69_4_a2,
     author = {A. Djurdjevac and A. R. Shirikyan},
     title = {Exponential stability of the flow for~a~generalized {Burgers} equation on~a~circle},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {588--598},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a2/}
}
TY  - JOUR
AU  - A. Djurdjevac
AU  - A. R. Shirikyan
TI  - Exponential stability of the flow for~a~generalized Burgers equation on~a~circle
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 588
EP  - 598
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a2/
LA  - ru
ID  - CMFD_2023_69_4_a2
ER  - 
%0 Journal Article
%A A. Djurdjevac
%A A. R. Shirikyan
%T Exponential stability of the flow for~a~generalized Burgers equation on~a~circle
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 588-598
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a2/
%G ru
%F CMFD_2023_69_4_a2
A. Djurdjevac; A. R. Shirikyan. Exponential stability of the flow for~a~generalized Burgers equation on~a~circle. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 588-598. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a2/