Exponential stability of the flow for~a~generalized Burgers equation on~a~circle
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 588-598
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the problem of stability for the flow of the $\mathrm{1D}$ Burgers equation on a circle. Using some ideas from the theory of positivity preserving semigroups, we establish the strong contraction in the $L^1$ norm. As a consequence, it is proved that the equation with a bounded external force possesses a unique bounded solution on $\mathbb{R}$, which is exponentially stable in $H^1$ as $t\to+\infty$. In the case of a random external force, we show that the difference between two trajectories goes to zero with probability $1$.
Keywords:
Burgers equation, exponential stability, bounded trajectory.
@article{CMFD_2023_69_4_a2,
author = {A. Djurdjevac and A. R. Shirikyan},
title = {Exponential stability of the flow for~a~generalized {Burgers} equation on~a~circle},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {588--598},
publisher = {mathdoc},
volume = {69},
number = {4},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a2/}
}
TY - JOUR AU - A. Djurdjevac AU - A. R. Shirikyan TI - Exponential stability of the flow for~a~generalized Burgers equation on~a~circle JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 588 EP - 598 VL - 69 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a2/ LA - ru ID - CMFD_2023_69_4_a2 ER -
%0 Journal Article %A A. Djurdjevac %A A. R. Shirikyan %T Exponential stability of the flow for~a~generalized Burgers equation on~a~circle %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 588-598 %V 69 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a2/ %G ru %F CMFD_2023_69_4_a2
A. Djurdjevac; A. R. Shirikyan. Exponential stability of the flow for~a~generalized Burgers equation on~a~circle. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 588-598. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a2/