On the existence of time-periodic solutions of nonlinear parabolic differential equations with nonlocal boundary conditions of the
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 712-725.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a nonlinear parabolic differential equation in a bounded multidimensional domain with nonlocal boundary conditions of the Bitsadze–Samarskii type. We prove existence theorems for a periodic in time generalized solution. Sufficient conditions for the existence of generalized solutions contain either an algebraic ellipticity condition or an algebraic strong ellipticity condition for the auxiliary differential-difference operator.
Keywords: parabolic differential equation, nonlocal boundary conditions of the Bitsadze–Samarskii type, operator of shifts in spatial variables, pseudomonotone operator.
@article{CMFD_2023_69_4_a10,
     author = {O. V. Solonukha},
     title = {On the existence of time-periodic solutions of nonlinear parabolic differential equations with nonlocal boundary conditions of the},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {712--725},
     publisher = {mathdoc},
     volume = {69},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a10/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - On the existence of time-periodic solutions of nonlinear parabolic differential equations with nonlocal boundary conditions of the
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 712
EP  - 725
VL  - 69
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a10/
LA  - ru
ID  - CMFD_2023_69_4_a10
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T On the existence of time-periodic solutions of nonlinear parabolic differential equations with nonlocal boundary conditions of the
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 712-725
%V 69
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a10/
%G ru
%F CMFD_2023_69_4_a10
O. V. Solonukha. On the existence of time-periodic solutions of nonlinear parabolic differential equations with nonlocal boundary conditions of the. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 4, pp. 712-725. http://geodesic.mathdoc.fr/item/CMFD_2023_69_4_a10/

[1] Baderko E. A., Cherepova M. F., “Smeshannaya zadacha dlya parabolicheskoi sistemy na ploskosti i granichnye integralnye uravneniya”, Sovrem. mat. Fundam. napravl., 64, no. 1, 2018, 20–36

[2] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl

[3] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, Usp. mat. nauk, 23:1 (1968), 45–90 | MR | Zbl

[4] Dubinskii Yu. A., “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhn. Sovrem. probl. mat., 9, 1976, 5–130 | Zbl

[5] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatorno-differentsialnye uravneniya, Mir, M., 1978

[6] Kamynin L. I., “O edinstvennosti resheniya kraevoi zadachi s granichnymi usloviyami A. A. Samarskogo dlya parabolicheskogo uravneniya vtorogo poryadka”, Zhurn. vych. mat. i mat. fiz., 16:6 (1976), 1480–1488 | MR | Zbl

[7] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR

[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[9] Melnik V. S., Zgupovskii M. Z., Nelineinyi analiz i uppavlenie beskonechnomepnymi sistemami, Naukova dumka, Kiev, 1999

[10] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Diff. uravn., 16:1 (1980), 1925–1935

[11] Skubachevskii A. L., “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, Usp. mat. nauk, 71:5 (2016), 3–112 | DOI | MR | Zbl

[12] Solonukha O. V., “Ob odnoi nelineinoi nelokalnoi zadache ellipticheskogo tipa”, Zhurn. vych. mat. i mat. fiz., 57:3 (2017), 60–72 | MR

[13] Solonukha O. V., “O razreshimosti lineinoi parabolicheskoi zadachi s nelokalnymi kraevymi usloviyami”, Sovrem. mat. Fundam. napravl., 67, no. 2, 2021, 349–362

[14] Solonukha O. V., “O periodicheskikh resheniyakh parabolicheskikh kvazilineinykh uravnenii s kraevymi usloviyami tipa Bitsadze—Samarskogo”, Dokl. RAN, 503 (2022), 83–86 | MR | Zbl

[15] Solonukha O. V., “Nelineinye differentsialno-raznostnye uravneniya ellipticheskogo i parabolicheskogo tipa i ikh prilozheniya k nelokalnym zadacham”, Sovrem. mat. Fundam. napravl., 69, no. 3, 2023, 445–563

[16] Solonukha O. V., “O razreshimosti nelineinykh parabolicheskikh funktsionalno-differentsialnykh uravnenii so sdvigami po prostranstvennym peremennym”, Mat. zametki, 113:5 (2023), 757–773 | MR

[17] Solonukha O. V., “O razreshimosti parabolicheskikh uravnenii s suschestvenno nelineinymi differentsialno-raznostnymi operatorami”, Sib. mat. zh., 64:5 (2023), 1094–1113 | MR

[18] Baderko E. A., Cherepova M. F., “Bitsadze-Samarskii problem for parabolic systems with Dini continuous coefficients”, Complex Var. Elliptic Equ., 64:5 (2019), 753–765 | DOI | MR | Zbl

[19] Carleman T., “Sur la theorie des equations integrales et ses applications”, Verhandlungen des Internat. Math. Kongr. (Zürich, 1932), v. 1, 138–151 | Zbl

[20] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhäuser, Basel—Boston—Berlin, 1997 | MR | Zbl

[21] Solonukha O. V., “On periodic solutions of linear parabolic problems with nonlocal boundary conditions”, Tavr. vestn. inform. i mat., 51:2 (2021), 7–11

[22] Solonukha O. V., “The first boundary value problem for quasilinear parabolic differential-difference equations”, Lobachevskii J. Math., 42:5 (2021), 1067–1077 | DOI | MR | Zbl

[23] Solonukha O. V., “On nonlinear nonlocal parabolic problem”, Russ. J. Math. Phys., 29:1 (2022), 121–140 | DOI | MR | Zbl