Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2023_69_3_a0, author = {Yu. O. Belyaeva and A. L. Skubachevskii}, title = {On global weak solutions of the {Vlasov--Poisson} equations with external magnetic field}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {383--398}, publisher = {mathdoc}, volume = {69}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a0/} }
TY - JOUR AU - Yu. O. Belyaeva AU - A. L. Skubachevskii TI - On global weak solutions of the Vlasov--Poisson equations with external magnetic field JO - Contemporary Mathematics. Fundamental Directions PY - 2023 SP - 383 EP - 398 VL - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a0/ LA - ru ID - CMFD_2023_69_3_a0 ER -
%0 Journal Article %A Yu. O. Belyaeva %A A. L. Skubachevskii %T On global weak solutions of the Vlasov--Poisson equations with external magnetic field %J Contemporary Mathematics. Fundamental Directions %D 2023 %P 383-398 %V 69 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a0/ %G ru %F CMFD_2023_69_3_a0
Yu. O. Belyaeva; A. L. Skubachevskii. On global weak solutions of the Vlasov--Poisson equations with external magnetic field. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 383-398. http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a0/
[1] Arsenev A. A., “O suschestvovanii obobschennykh i statsionarnykh statisticheskikh reshenii sistemy uravnenii Vlasova v ogranichennoi oblasti”, Diff. uravn., 15:7 (1979), 1253–1266 | MR | Zbl
[2] Belyaeva Yu. O., Skubachevskii A. L., “Ob odnoznachnoi razreshimosti pervoi smeshannoi zadachi dlya sistemy uravnenii Vlasova—Puassona v beskonechnom tsilindre”, Zap. nauch. sem. POMI, 477, 2018, 12–34
[3] Ilgisonis V. V., Klassicheskie zadachi fiziki goryachei plazmy, MEI, M., 2016
[4] Skubachevskii A. L., “Ob odnoznachnoi razreshimosti smeshannykh zadach dlya sistemy uravnenii Vlasova—Puassona v poluprostranstve”, Dokl. RAN, 443:4 (2012), 431–434 | Zbl
[5] Skubachevskii A. L., “Smeshannye zadachi dlya uravnenii Vlasova—Puassona v poluprostranstve”, Tr. MIAN, 283, 2013, 204–232 | Zbl
[6] Skubachevskii A. L., “Uravneniya Vlasova—Puassona dlya dvukomponentnoi plazmy v odnorodnom magnitnom pole”, Usp. mat. nauk, 69:2 (2014), 107–148 | DOI | MR | Zbl
[7] Batt J., “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differ. Equ, 25:3 (1977), 342–364 | DOI | MR | Zbl
[8] Belyaeva Yu. O., Gebhard B., Skubachevskii A. L., “A general way to confined stationary Vlasov–Poisson plasma configurations”, Kinet. Relat. Models, 14:2 (2021), 257–282 | DOI | MR | Zbl
[9] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin–Heidelberg–New York, 1977 | MR | Zbl
[10] Horst E., Hunze R., “Weak solutions of the initial value problem for the unmodified non-linear Vlassov equation”, Math. Methods Appl. Sci, 6 (1984), 262–279 | DOI | MR | Zbl
[11] Horvath J., Topological Vector Spaces and Distributions, v. 1, Addison-Wesley, Reading, etc., 1966 | MR | Zbl
[12] Knopf P., “Confined steady states of a Vlasov–Poisson plasma in an infitely long cylinder”, Math. Methods Appl. Sci, 42 (2019), 6369–6384 | DOI | MR | Zbl
[13] Weckler J., Zum Anfangs-Randwertproblem des Vlasov–Poisson-Systems, Dissertation, Universität München, 1994 | Zbl
[14] Weckler J., “On the initial-boundary-value problem for the Vlasov–Poisson system: existence of weak solutions and stability”, Arch. Ration. Mech. Anal, 130:2 (1995), 145–161 | DOI | MR | Zbl