On global weak solutions of the Vlasov--Poisson equations with external magnetic field
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 383-398.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the first mixed problem for the system of Vlasov–Poisson equations with a given external magnetic field in a bounded domain. This problem describes the kinetics of high-temperature plasma in controlled thermonuclear fusion plants and is considered with respect to unknown functions: electric field potential, distribution functions of positively charged ions and electrons. Additionally, we assumed that the distribution functions of charged particles satisfy the condition of mirror reflection from the boundary of the domain under consideration. We prove the existence of global weak solutions of such a problem.
Mots-clés : Vlasov equations
Keywords: weak solutions, external magnetic field.
@article{CMFD_2023_69_3_a0,
     author = {Yu. O. Belyaeva and A. L. Skubachevskii},
     title = {On global weak solutions of the {Vlasov--Poisson} equations with external magnetic field},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {383--398},
     publisher = {mathdoc},
     volume = {69},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a0/}
}
TY  - JOUR
AU  - Yu. O. Belyaeva
AU  - A. L. Skubachevskii
TI  - On global weak solutions of the Vlasov--Poisson equations with external magnetic field
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 383
EP  - 398
VL  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a0/
LA  - ru
ID  - CMFD_2023_69_3_a0
ER  - 
%0 Journal Article
%A Yu. O. Belyaeva
%A A. L. Skubachevskii
%T On global weak solutions of the Vlasov--Poisson equations with external magnetic field
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 383-398
%V 69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a0/
%G ru
%F CMFD_2023_69_3_a0
Yu. O. Belyaeva; A. L. Skubachevskii. On global weak solutions of the Vlasov--Poisson equations with external magnetic field. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 3, pp. 383-398. http://geodesic.mathdoc.fr/item/CMFD_2023_69_3_a0/

[1] Arsenev A. A., “O suschestvovanii obobschennykh i statsionarnykh statisticheskikh reshenii sistemy uravnenii Vlasova v ogranichennoi oblasti”, Diff. uravn., 15:7 (1979), 1253–1266 | MR | Zbl

[2] Belyaeva Yu. O., Skubachevskii A. L., “Ob odnoznachnoi razreshimosti pervoi smeshannoi zadachi dlya sistemy uravnenii Vlasova—Puassona v beskonechnom tsilindre”, Zap. nauch. sem. POMI, 477, 2018, 12–34

[3] Ilgisonis V. V., Klassicheskie zadachi fiziki goryachei plazmy, MEI, M., 2016

[4] Skubachevskii A. L., “Ob odnoznachnoi razreshimosti smeshannykh zadach dlya sistemy uravnenii Vlasova—Puassona v poluprostranstve”, Dokl. RAN, 443:4 (2012), 431–434 | Zbl

[5] Skubachevskii A. L., “Smeshannye zadachi dlya uravnenii Vlasova—Puassona v poluprostranstve”, Tr. MIAN, 283, 2013, 204–232 | Zbl

[6] Skubachevskii A. L., “Uravneniya Vlasova—Puassona dlya dvukomponentnoi plazmy v odnorodnom magnitnom pole”, Usp. mat. nauk, 69:2 (2014), 107–148 | DOI | MR | Zbl

[7] Batt J., “Global symmetric solutions of the initial value problem of stellar dynamics”, J. Differ. Equ, 25:3 (1977), 342–364 | DOI | MR | Zbl

[8] Belyaeva Yu. O., Gebhard B., Skubachevskii A. L., “A general way to confined stationary Vlasov–Poisson plasma configurations”, Kinet. Relat. Models, 14:2 (2021), 257–282 | DOI | MR | Zbl

[9] Gilbarg D., Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin–Heidelberg–New York, 1977 | MR | Zbl

[10] Horst E., Hunze R., “Weak solutions of the initial value problem for the unmodified non-linear Vlassov equation”, Math. Methods Appl. Sci, 6 (1984), 262–279 | DOI | MR | Zbl

[11] Horvath J., Topological Vector Spaces and Distributions, v. 1, Addison-Wesley, Reading, etc., 1966 | MR | Zbl

[12] Knopf P., “Confined steady states of a Vlasov–Poisson plasma in an infitely long cylinder”, Math. Methods Appl. Sci, 42 (2019), 6369–6384 | DOI | MR | Zbl

[13] Weckler J., Zum Anfangs-Randwertproblem des Vlasov–Poisson-Systems, Dissertation, Universität München, 1994 | Zbl

[14] Weckler J., “On the initial-boundary-value problem for the Vlasov–Poisson system: existence of weak solutions and stability”, Arch. Ration. Mech. Anal, 130:2 (1995), 145–161 | DOI | MR | Zbl