On the theory of entropy sub- and supersolutions of nonlinear degenerate parabolic equations
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 306-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a second-order nonlinear degenerate anisotropic parabolic equation in the case when the flux vector is only continuous and the nonnegative diffusion matrix is bounded and measurable. The concepts of entropy sub- and supersolution of the Cauchy problem are introduced, so that the entropy solution of this problem, understood in the sense of Chen–Perthame, is both an entropy sub- and supersolution. It is established that the maximum of entropy subsolutions of the Cauchy problem is also an entropy subsolution of this problem. This result is used to prove the existence of the largest entropy subsolution (and the smallest entropy supersolution). It is also shown that the largest entropy subsolution and the smallest entropy supersolution are also entropy solutions.
Keywords: nonlinear degenerate parabolic equations, Cauchy problem, entropy solutions, entropy sub- and supersolutions, maximum/minimum principle, method of doubling variables.
@article{CMFD_2023_69_2_a8,
     author = {E. Yu. Panov},
     title = {On the theory of entropy sub- and supersolutions of nonlinear degenerate parabolic equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {306--331},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a8/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On the theory of entropy sub- and supersolutions of nonlinear degenerate parabolic equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 306
EP  - 331
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a8/
LA  - ru
ID  - CMFD_2023_69_2_a8
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On the theory of entropy sub- and supersolutions of nonlinear degenerate parabolic equations
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 306-331
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a8/
%G ru
%F CMFD_2023_69_2_a8
E. Yu. Panov. On the theory of entropy sub- and supersolutions of nonlinear degenerate parabolic equations. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 306-331. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a8/

[1] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Mat. sb., 81:2 (1970), 228–255 | Zbl

[2] Kruzhkov S. N., Panov E. Yu., “Konservativnye kvazilineinye zakony pervogo poryadka s beskonechnoi oblastyu zavisimosti ot nachalnykh dannykh”, Dokl. AN SSSR, 314:1 (1990), 79–84 | Zbl

[3] Panov E. Yu., “K teorii obobschennykh entropiinykh sub- i super-reshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Diff. uravn., 37:2 (2001), 252–259 | MR | Zbl

[4] Panov E. Yu., “O naibolshikh i naimenshikh obobschennykh entropiinykh resheniyakh zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka”, Mat. sb., 193:5 (2002), 95–112 | DOI | MR | Zbl

[5] Panov E. Yu., “K teorii obobschennykh entropiinykh reshenii zadachi Koshi dlya kvazilineinogo uravneniya pervogo poryadka v klasse lokalno summiruemykh funktsii”, Izv. RAN, 66:6 (2002), 91–136 | MR | Zbl

[6] Panov E. Yu., “K teorii entropiinykh reshenii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, Sovrem. mat. Fundam. napravl., 66, no. 2, 2020, 292–313

[7] Andreianov B. P., Bénilan Ph., Kruzhkov S. N., “$L^1$-theory of scalar conservation law with continuous flux function”, J. Funct. Anal., 171:1 (2000), 15–33 | DOI | MR | Zbl

[8] Andreianov B. P., Igbida N., “On uniqueness techniques for degenerate convection–diffusion problems”, Int. J. Dyn. Syst. Differ. Equ., 4:1-2 (2012), 3–34 | MR | Zbl

[9] Andreianov B. P., Maliki M., “A note on uniqueness of entropy solutions to degenerate parabolic equations in $\mathbb{R}^N$”, NoDEA: Nonlinear Differ. Equ. Appl., 17:1 (2010), 109–118 | DOI | MR | Zbl

[10] Carrillo J., “Entropy solutions for nonlinear degenerate problems”, Arch. Ration. Mech. Anal., 147 (1999), 269–361 | DOI | MR | Zbl

[11] Chen G.-Q., Perthame B., “Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 645–668 | DOI | MR | Zbl

[12] Kruzhkov S. N., Panov E. Yu., “Osgood's type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 40 (1994), 31–54 | DOI | MR

[13] Maliki M., Touré H., “Uniqueness of entropy solutions for nonlinear degenerate parabolic problem”, J. Evol. Equ., 3:4 (2003), 603–622 | DOI | MR | Zbl

[14] Panov E. Yu., “On the Cauchy problem for scalar conservation laws in the class of Besicovitch almost periodic functions: Global well-posedness and decay property”, J. Hyperbolic Differ. Equ., 13 (2016), 633–659 | DOI | MR | Zbl

[15] Panov E. Yu., “To the theory of entropy sub-solutions of degenerate nonlinear parabolic equations”, Math. Meth. Appl. Sci., 43:16 (2020), 9387–9404 | DOI | MR | Zbl

[16] Panov E. Yu., “On some properties of entropy solutions of degenerate non-linear anisotropic parabolic equations”, J. Differ. Equ., 275 (2021), 139–166 | DOI | MR | Zbl