Evasion problem in linear parametric discrete games
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 375-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the evasion problem in the formulation by Pontryagin and Mishchenko for linear discrete games depending on a parameter. We obtain sufficient conditions and domains of parameter values that ensure the solvability of the evasion problem. The obtained results are applied to the solution of the evasion problem for the well-known problem in the theory of differential games “Isotropic Rockets”–“Boy and Crocodile” in the discrete version.
Keywords: differential game, discrete game, pursuer, evader player, control, parameter, terminal set.
Mots-clés : evasion
@article{CMFD_2023_69_2_a12,
     author = {L. P. Yugay},
     title = {Evasion problem in linear parametric discrete games},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {375--382},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a12/}
}
TY  - JOUR
AU  - L. P. Yugay
TI  - Evasion problem in linear parametric discrete games
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 375
EP  - 382
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a12/
LA  - ru
ID  - CMFD_2023_69_2_a12
ER  - 
%0 Journal Article
%A L. P. Yugay
%T Evasion problem in linear parametric discrete games
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 375-382
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a12/
%G ru
%F CMFD_2023_69_2_a12
L. P. Yugay. Evasion problem in linear parametric discrete games. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 375-382. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a12/

[1] Azamov A. A., Osnovaniya teorii diskretnykh igr, Niso Poligraf, Tashkent, 2011

[2] Dzyubenko G. Ts., Pshenichnyi B. N., “Diskretnye differentsialnye igry s zapazdyvaniem informatsii”, Kibernetika, 1972, no. 6, 69–73 | Zbl

[3] Mamatov M. Sh., “O primenenii metoda konechnykh raznostei k resheniyu zadachi presledovaniya v sistemakh s raspredelennymi parametrami”, Avtomatika i telemekhanika, 2009, no. 8, 123–132 | Zbl

[4] Mischenko E. F., Nikolskii M. S., Satimov N., “Zadacha ukloneniya ot vstrechi v differentsialnykh igrakh mnogikh lits”, Tr. MIAN, 113, 1997, 105–128

[5] Polovinkin E. S., Mnogoznachnyi analiz i differentsialnye vklyucheniya, Fizmatlit, M., 2014

[6] Pontryagin L. S., Mischenko E. F., “Zadacha ubeganiya odnogo upravlyaemogo ob'ekta ot drugogo”, Dokl. AN SSSR, 189:4 (1969), 721–723 | Zbl

[7] Satimov N. Yu., “Zadacha ubeganiya dlya odnogo klassa nelineinykh diskretnykh igr”, Izv. AN SSSR. Tekhn. kibern., 1973, no. 6, 45–48 | Zbl

[8] Satimov N., Azamov A. A., “Nelineinye diskretnye igry ubeganiya”, Kibernetika, 1976, no. 4, 70–73 | MR

[9] Chernousko F. L., Melikyan A. A., Igrovye zadachi poiska i upravleniya, Nauka, M., 1978 | MR

[10] Chikrii A. A., “O lineinykh diskretnykh igrakh kachestva”, Kibernetika, 1971, no. 6, 90–99 | Zbl

[11] Chikrii A. A., Conflict-controlled processes, Kluver Acad. Publ., Boston—London—Dordrecht, 1997 | MR | Zbl

[12] Fleming W., “The convergence problem for differential games”, J. Math. Anal. Appl., 1961, no. 3, 102–116 | DOI | MR | Zbl

[13] Isaacs R., Differential games (A mathematical theory with applications to warfare and pursuit, control and optimization), John Wiley and Sons, New York—London—Sydney, 1965 | MR | Zbl

[14] Krasovskii N. N., Subbotin A. I., Game theoretical control problems, Springer, New York—Berlin, 1988 | MR | Zbl

[15] Yugay L. P., “The problem of trajectories avoiding a sparse terminal set”, Dokl. Math., 102:3 (2020), 538–541 | DOI | MR | Zbl