On the existence and uniqueness of a positive solution to a boundary-value problem of the Sturm--Liouville type for a nonlinear ordinary differential equation
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 201-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the fixed point theorem in partially ordered sets, we obtain sufficient conditions for the existence of a unique positive solution to a boundary-value problem of the Sturm–Liouville type for a nonlinear ordinary differential equation, and give an example illustrating the results obtained.
Keywords: cone, operator fixed point, Green's function.
Mots-clés : positive solution
@article{CMFD_2023_69_2_a0,
     author = {G. \`E. Abduragimov and P. \`E Abduragimova and M. M. Kuramagomedova},
     title = {On the existence and uniqueness of a positive solution to a boundary-value problem of the {Sturm--Liouville} type for a nonlinear ordinary differential equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {201--207},
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a0/}
}
TY  - JOUR
AU  - G. È. Abduragimov
AU  - P. È Abduragimova
AU  - M. M. Kuramagomedova
TI  - On the existence and uniqueness of a positive solution to a boundary-value problem of the Sturm--Liouville type for a nonlinear ordinary differential equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 201
EP  - 207
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a0/
LA  - ru
ID  - CMFD_2023_69_2_a0
ER  - 
%0 Journal Article
%A G. È. Abduragimov
%A P. È Abduragimova
%A M. M. Kuramagomedova
%T On the existence and uniqueness of a positive solution to a boundary-value problem of the Sturm--Liouville type for a nonlinear ordinary differential equation
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 201-207
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a0/
%G ru
%F CMFD_2023_69_2_a0
G. È. Abduragimov; P. È Abduragimova; M. M. Kuramagomedova. On the existence and uniqueness of a positive solution to a boundary-value problem of the Sturm--Liouville type for a nonlinear ordinary differential equation. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 2, pp. 201-207. http://geodesic.mathdoc.fr/item/CMFD_2023_69_2_a0/

[1] Abduragimov E. I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo ODU chetvertogo poryadka i chislennyi metod ego postroeniya”, Vestn. SamU. Estestvennonauchn. ser., 76:2 (2010), 5–12

[2] Abduragimov E. I., “Suschestvovanie polozhitelnogo resheniya dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka”, Vestn. SamU. Estestvennonauchn. ser., 121:10 (2014), 9–16 | Zbl

[3] Abduragimov E. I., Abduragimova P. E., Gadzhieva T. Yu., “Dvukhtochechnaya kraevaya zadacha dlya odnogo nelineinogo ODU 4-go poryadka. Suschestvovanie, edinstvennost polozhitelnogo resheniya i chislennyi metod ego postroeniya”, Vestn. Dag. gos. un-ta. Ser. 1: Estestv. nauki, 2019, no. 3, 79–85

[4] Abduragimov G. E., Abduragimova P. E., Kuramagomedova M. M., “O suschestvovanii i edinstvennosti polozhitelnogo resheniya kraevoi zadachi dlya nelineinogo obyknovennogo differentsialnogo uravneniya chetnogo poryadka”, Vestn. ros. un-tov. Mat., 25:136 (2021), 341–347

[5] Cabada A., Iglesias J., “Nonlinear differential equations with perturbed Dirichlet integral boundary conditions”, Bound. Value Probl., 66 (2021), 1–19 | MR

[6] Harjani J., Sadarangani K., “Fixed point theorems for weakly concractive mappings in partially ordered sets”, Nonlinear Anal., 71 (2009), 3403–3410 | DOI | MR | Zbl

[7] Li Z., Shu X.-B., Miao T., “The existence of solutions for Sturm–Liouville differential equation with random impulses and boundary value problems”, Bound. Value Probl., 97 (2022), 1–23 | MR

[8] Liu Y., “Multiple positive of nonlinear singular boundary value problem for fourth-order equations”, Appl. Math. Lett., 4 (2004), 747–757 | DOI | MR

[9] Moustafa El-S., “Positive solutions of boundary value problems for $n$th-order ordinary differential equations”, Electron. J. Qual. Theory Differ. Equ., 1 (2008), 1–9 | MR | Zbl

[10] Nietto J. J., Rodriguez-Lopez R., “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations”, Order, 22 (2005), 223–239 | DOI | MR

[11] Talib I., Abdeljawad T., Abdulah M. A., “New results and applications on the existence results for nonlinear coupled systems”, Adv. Differ. Equ., 368 (2021), 1–22 | MR

[12] Wang F., Ding R., “On positive solutions of second-order delayed differential system with indefinite weight”, Bound. Value Probl., 96 (2021), 1–17 | MR

[13] Yang Z., “Positive solutions of a second-order nonlinear Robin problem involving the first-order derivative”, Adv. Differ. Equ., 313 (2021), 1–16 | MR

[14] Ying H., “Existence theory for single positive solution to fourth-order value problems”, Adv. Pure Math., 4 (2014), 480–486 | DOI

[15] Zhang Y., Abdella K., Feng W., “Positive solutions for second-order differential equations with singularities and separated integral boundary condition”, Electron. J. Qual. Theory Differ. Equ., 75 (2020), 1–12 | MR