On asymptotic properties of solutions for differential equations of neutral type
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 116-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of systems of linear autonomous functional differential equations of neutral type is studied. The study is based on the well-known representation of the solution in the form of an integral operator, the kernel of which is the Cauchy function of the equation under study. The definitions of Lyapunov, asymptotic, and exponential stability are formulated in terms of the corresponding properties of the Cauchy function, which allows us to clarify a number of traditional concepts without loss of generality. Along with the concept of asymptotic stability, a new concept of strong asymptotic stability is introduced. The main results are related to the stability with respect to the initial function from the spaces of summable functions. In particular, it is established that strong asymptotic stability with initial data from the space $L_1$ is equivalent to the exponential estimate of the Cauchy function and, moreover, exponential stability with respect to initial data from the spaces $L_p$ for any $p\ge1.$
Keywords: neutral-type functional differential equations, Cauchy function, Lyapunov stability, exponential stability, asymptotic stability, strong asymptotic stability.
@article{CMFD_2023_69_1_a7,
     author = {V. V. Malygina and K. M. Chudinov},
     title = {On asymptotic properties of solutions for differential equations of neutral type},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {116--133},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a7/}
}
TY  - JOUR
AU  - V. V. Malygina
AU  - K. M. Chudinov
TI  - On asymptotic properties of solutions for differential equations of neutral type
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 116
EP  - 133
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a7/
LA  - ru
ID  - CMFD_2023_69_1_a7
ER  - 
%0 Journal Article
%A V. V. Malygina
%A K. M. Chudinov
%T On asymptotic properties of solutions for differential equations of neutral type
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 116-133
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a7/
%G ru
%F CMFD_2023_69_1_a7
V. V. Malygina; K. M. Chudinov. On asymptotic properties of solutions for differential equations of neutral type. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 116-133. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a7/

[1] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., Vvedenie v teoriyu funktsionalno-differentsialnykh uravnenii, Nauka, M., 1991 | MR

[2] Andrianov D. L., “Kraevye zadachi i voprosy upravleniya dlya lineinykh raznostnykh uravnenii s posledeistviem”, Izv. vuzov. Ser. mat., 1993, no. 5, 3–16 | Zbl

[3] Balandin A. S., Malygina V. V., “Ob eksponentsialnoi ustoichivosti lineinykh differentsialno-raznostnykh uravnenii neitralnogo tipa”, Izv. vuzov. Ser. mat., 2007, no. 7, 17–27 | Zbl

[4] Balandin A. S., Malygina V. V., “Asimptoticheskie svoistva reshenii odnogo klassa differentsialnykh uravnenii neitralnogo tipa”, Mat. tr., 23:2 (2020), 3–49 | Zbl

[5] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967

[6] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, Maks Press, M., 2016

[7] Demidovich B. P., Vvedenie v matematicheskuyu teoriyu ustoichivosti, Nauka, M., 1967

[8] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR

[9] Lyusternik L. A., Sobolev V. I., Kratkii kurs funktsionalnogo analiza, Vysshaya shkola, M., 1982 | MR

[10] Malygina V. V., Balandin A. S., “Asimptoticheskaya ustoichivost odnogo klassa uravnenii neitralnogo tipa”, Sib. mat. zh., 62:1 (2021), 106–116 | MR | Zbl

[11] Simonov P. M., Chistyakov A. V., “Ob eksponentsialnoi ustoichivosti lineinykh differentsialno-raznostnykh sistem”, Izv. vuzov. Ser. Mat., 1997, no. 6, 37–49 | Zbl

[12] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984

[13] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971 | MR

[14] Balandin A., “On relation between the fundamental and Cauchy matrices of linear autonomous functional differential equations of neutral type”, Func. Differ. Equ., 27:3-4 (2020), 61–70 | MR

[15] Balandin A., Chudinov K., “On the asymptotic behavior of linear autonomous functional differential equations of neutral type”, Func. Differ. Equ., 15:1-2 (2008), 5–15 | MR | Zbl

[16] Hahn W., “Zur stabilität der lösungen von linearen differential-differenzengliechungen mit konstanten koeffizienten”, Math. Ann., 131 (1956), 151–166 | DOI | MR | Zbl

[17] Junca S., Lombard B., “Stability of a critical nonlinear neutral delay differential equation”, J. Differ. Equ., 256:7 (2014), 2368–2391 | DOI | MR | Zbl

[18] Malygina V., Chudinov K., “On the asymptotic behavior of solutions to linear autonomous neutral functional differential equations”, Func. Differ. Equ., 27:3-4 (2020), 103–123 | MR | Zbl