Spectral properties of operators in the problem on normal oscillations of~a~mixture of viscous compressible fluids
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 73-97

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study a problem of normal oscillations of a homogeneous mixture of several viscous compressible fluids filling a bounded domain of three-dimensional space with an infinitely smooth boundary. Two boundary conditions are considered: the no-slip condition and the slip condition without shear stresses. It is proved that the essential spectrum of the problem in both cases is a finite set of segments located on the real axis. The discrete spectrum lies on the real axis, except perhaps for a finite number of complex conjugate eigenvalues. The spectrum of the problem contains a subsequence of eigenvalues with a limit point at infinity and a power-law asymptotic distribution.
Keywords: mixture of fluids, spectral problem, essential spectrum, discrete spectrum.
Mots-clés : compressible viscous fluid
@article{CMFD_2023_69_1_a5,
     author = {D. A. Zakora},
     title = {Spectral properties of operators in the problem on normal oscillations of~a~mixture of viscous compressible fluids},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {73--97},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a5/}
}
TY  - JOUR
AU  - D. A. Zakora
TI  - Spectral properties of operators in the problem on normal oscillations of~a~mixture of viscous compressible fluids
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 73
EP  - 97
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a5/
LA  - ru
ID  - CMFD_2023_69_1_a5
ER  - 
%0 Journal Article
%A D. A. Zakora
%T Spectral properties of operators in the problem on normal oscillations of~a~mixture of viscous compressible fluids
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 73-97
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a5/
%G ru
%F CMFD_2023_69_1_a5
D. A. Zakora. Spectral properties of operators in the problem on normal oscillations of~a~mixture of viscous compressible fluids. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 73-97. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a5/