Absence of positive solutions of some nonlinear inequalities with transformations of the argument in a half-space
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 62-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the absence of positive solutions for some semilinear elliptic partial differential inequalities with transformations of the argument in a half-space. The proofs are based on the test functions method.
Keywords: nonlinear elliptic inequalities
Mots-clés : transformations of arguments, absence of solutions, positive solutions, monotonic solutions.
@article{CMFD_2023_69_1_a4,
     author = {E. I. Galakhov and O. A. Salieva},
     title = {Absence of positive solutions of some nonlinear inequalities with transformations of the argument in a half-space},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {62--72},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a4/}
}
TY  - JOUR
AU  - E. I. Galakhov
AU  - O. A. Salieva
TI  - Absence of positive solutions of some nonlinear inequalities with transformations of the argument in a half-space
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 62
EP  - 72
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a4/
LA  - ru
ID  - CMFD_2023_69_1_a4
ER  - 
%0 Journal Article
%A E. I. Galakhov
%A O. A. Salieva
%T Absence of positive solutions of some nonlinear inequalities with transformations of the argument in a half-space
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 62-72
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a4/
%G ru
%F CMFD_2023_69_1_a4
E. I. Galakhov; O. A. Salieva. Absence of positive solutions of some nonlinear inequalities with transformations of the argument in a half-space. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 62-72. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a4/

[1] Galakhov E. I., Salieva O. A., “Otsutstvie reshenii zadachi Dirikhle dlya nekotorykh kvazilineinykh ellipticheskikh uravnenii v poluprostranstve”, Diff. uravn., 52 (2016), 749–760 | Zbl

[2] Mitidieri E., Pokhozhaev S. I., “Apriornye otsenki i razrushenie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, 2001, 1–383

[3] Pokhozhaev S. I., “Suschestvenno nelineinye emkosti, porozhdennye differentsialnymi operatorami”, Dokl. RAN, 56 (1997), 592–594 | Zbl

[4] Bidaut-Véron M. F., Pohozaev S., “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 84 (2001), 1–49 | DOI | MR | Zbl

[5] Birindelli I., Mitidieri E., “Liouville theorems for elliptic inequalities and applications”, Proc. Roy. Soc. Edinburgh, 128A (1998), 1217–1247 | DOI | MR | Zbl

[6] Dancer E., “Some notes on the method of moving planes”, Bull. Aust. Math. Soc., 46 (1992), 425–434 | DOI | MR | Zbl

[7] Dupaigne L., Sirakov B., Souplet Ph., A Liouville-type theorem for the Lane—Emden equation in a half-space, 2020, arXiv: 2003.11466 | MR

[8] Farina A., Montoro L., Sciunzi B., Monotonicity in half-spaces of positive solutions to $-\Delta_p u=f(u)$ in the case $p>2$, 2015, arXiv: 1509.03897v1 | MR

[9] Galakhov E., Salieva O., “On blow-up of solutions to differential inequalities with singularities on unbounded sets”, J. Math. Anal. Appl., 408 (2013), 102–113 | DOI | MR

[10] Galaktionov V., Mitidieri E., Pohozaev S., Blow-up for higher-order parabolic, hyperbolic, dispersion and Schrödinger equations, CRC Press, Boca Raton, 2014 | MR

[11] Salieva O., “On nonexistence of solutions to some nonlinear inequalities with transformed argument”, Electron. J. Qual. Theory Differ. Equ., 2017 (2017), 3–13 | DOI | MR | Zbl