Shadowing property for nonautonomous dynamical systems
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 50-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach based on the analysis of the influence of a single perturbation is proposed as a test for the shadowing property for a broad class of dynamical systems (in particular, non-autonomous) under a variety of perturbations. Applications for several interesting cases are considered in detail.
Keywords: dynamical system, pseudo-trajectory, shadowing, average shadowing.
@article{CMFD_2023_69_1_a3,
     author = {M. L. Blank},
     title = {Shadowing property for nonautonomous dynamical systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {50--61},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a3/}
}
TY  - JOUR
AU  - M. L. Blank
TI  - Shadowing property for nonautonomous dynamical systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 50
EP  - 61
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a3/
LA  - ru
ID  - CMFD_2023_69_1_a3
ER  - 
%0 Journal Article
%A M. L. Blank
%T Shadowing property for nonautonomous dynamical systems
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 50-61
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a3/
%G ru
%F CMFD_2023_69_1_a3
M. L. Blank. Shadowing property for nonautonomous dynamical systems. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 50-61. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a3/

[1] Anosov D. V., “Ob odnom klasse invariantnykh mnozhestv gladkikh dinamicheskikh sistem”, Trudy V Mezhd. konf. po nelineinym kolebaniyam, v. 2, In-t matematiki AN USSR, Kiev, 1970, 39–45

[2] Blank M., “Metric properties of $\varepsilon$-trajectories of dynamical systems with stochastic behaviour”, Ergodic Theory Dynam. Systems, 8:3 (1988), 365–378 | DOI | MR | Zbl

[3] Blank M., Average shadowing and gluing property, 2022, arXiv: 2202.13407 [math.DS] | MR

[4] Blank M., Average shadowing revisited, 2022, arXiv: 2205.10769 [math.DS nlin.CD]

[5] Bowen R., Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, Berlin, 1975 | MR | Zbl

[6] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Univ. Press, Cambridge, 1995 | MR | Zbl

[7] Kulczycki M., Kwietniak D., Oprocha P., “On almost specification and average shadowing properties”, Fund. Math., 224 (2014), 241–278 | DOI | MR | Zbl

[8] Pilyugin S. Yu., Sakai K., Shadowing and hyperbolicity, Springer, Cham, 2017 | MR | Zbl