Method of search functionals and its applications in fixed point and coincidence theory
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 185-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper contains a survey of several results from the author's papers and joint papers by the author and Yu. N. Zakharyan, both on the zero existence and approximation for single-valued and multi-valued $(\alpha,\beta)$-search functionals, and also on the zero existence preservation for parametric family of such functionals, under the parameter changing. Some corollaries of these results in the fixed point and coincidence theory of single-valued and multi-valued mappings of metric spaces are also given. The comparison is provided with some known results by other authors. In the concluding part of the paper, we investigate the problem on the existence of a parameter-continuous single-valued branch of zeros for a parametric family of search functionals. A theorem on the existence of solution of this problem is proved.
Keywords: search functionals, existence of zeros, fixed points, coincidence points.
@article{CMFD_2023_69_1_a11,
     author = {T. N. Fomenko},
     title = {Method of search functionals and its applications in fixed point and coincidence theory},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a11/}
}
TY  - JOUR
AU  - T. N. Fomenko
TI  - Method of search functionals and its applications in fixed point and coincidence theory
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 185
EP  - 200
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a11/
LA  - ru
ID  - CMFD_2023_69_1_a11
ER  - 
%0 Journal Article
%A T. N. Fomenko
%T Method of search functionals and its applications in fixed point and coincidence theory
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 185-200
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a11/
%G ru
%F CMFD_2023_69_1_a11
T. N. Fomenko. Method of search functionals and its applications in fixed point and coincidence theory. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 185-200. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a11/

[1] Arutyunov A. V., “Nakryvayuschie otobrazheniya v metricheskikh prostranstvakh i nepodvizhnye tochki”, Dokl RAN, 416:2 (2007), 151–155 | Zbl

[2] Arutyunov A. V., Greshnov A. V., “(q1, q2)-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. Mat., 82:2 (2018), 3–32 | DOI | MR | Zbl

[3] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, LIBROKOM, M., 2011 | MR

[4] Zhukovskii E. S., “Nepodvizhnye tochki szhimayuschikh otobrazhenii $f$-kvazimetricheskikh prostranstv”, Sib. mat. zh., 59:6 (2018), 1338–1350 | MR | Zbl

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972 | MR

[6] Fomenko T. N., “O priblizhenii k tochkam sovpadeniya i obschim nepodvizhnym tochkam nabora otobrazhenii metricheskikh prostranstv”, Mat. zametki, 86:1 (2009), 110–125 | DOI | MR | Zbl

[7] Fomenko T. N., “K zadache kaskadnogo poiska mnozhestva sovpadenii nabora mnogoznachnykh otobrazhenii”, Mat. zametki, 86:2 (2009), 276–281 | DOI | Zbl

[8] Fomenko T. N., “Kaskadnyi poisk proobrazov i sovpadenii: globalnaya i lokalnaya versii”, Mat. zametki, 93:1 (2013), 127–143 | DOI | Zbl

[9] Fomenko T. N., “Poisk nulei funktsionalov, nepodvizhnye tochki i sovpadeniya otobrazhenii v kvazimetricheskikh prostranstvakh”, Vestn. Mosk. un-ta. Ser. 1. Mat. Mekh., 2019, no. 6, 14–22 | Zbl

[10] Fomenko T. N., “Suschestvovanie nulei mnogoznachnykh funktsionalov, sovpadeniya i nepodvizhnye tochki v $f$-kvazimetricheskom prostranstve”, Mat. zametki, 110:4 (2021), 598–609 | DOI | Zbl

[11] Banach S., “Sur les operations dans les ensembles abstraits et leur application aux equations integrales”, Fund. Math., 3 (1922), 133–181 | DOI | MR

[12] Fomenko T. N., “Cascade search principle and its applications to the coincidence problem of n one-valued or multi-valued mappings”, Topology Appl., 157 (2010), 760–773 | DOI | MR | Zbl

[13] Fomenko T. N., “Zeros of functionals and a parametric version of Michael selection theorem”, Lobachevskii J. Math., 43:3 (2022), 1314–1321 | DOI | MR

[14] Fomenko T. N., Zakharyan Ju. N., “Preservation of the existence of zeros in a family of set-valued functionals and some consequences”, Math. Notes, 108:6 (2020), 802–813 | MR

[15] Frigon M., “On continuation methods for contractive and nonexpansive mappings”, Recent advances on metric fixed point theory, Univ. of Sevilla, Sevilla, 1996, 19–30 | MR | Zbl

[16] Frigon M., Granas A., “Resultats du type de Leray—Schauder pour des contractions multivoques”, Topol. Methods Nonlinear Anal., 4 (1994), 197–208 | DOI | MR | Zbl