Smoothness of solutions to the damping problem for nonstationary control system with delay of neutral type on the whole interval
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the damping problem for a nonstationary control system described by a system of differential-difference equations of neutral type with smooth matrix coefficients and several delays. This problem is equivalent to the boundary-value problem for a system of second-order differential-difference equations, which has a unique generalized solution. It is proved that the smoothness of this solution can be violated on the considered interval and is preserved only on some subintervals. Sufficient conditions for the initial function are obtained to ensure the smoothness of the generalized solution over the entire interval.
Keywords: neutral-type differential-difference equation, damping problem for control system with aftereffect, Krasovskii problem, generalized solution, smoothness of solution.
@article{CMFD_2023_69_1_a0,
     author = {A. S. Adkhamova},
     title = {Smoothness of solutions to the damping problem for nonstationary control system with delay of neutral type on the whole interval},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {69},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a0/}
}
TY  - JOUR
AU  - A. S. Adkhamova
TI  - Smoothness of solutions to the damping problem for nonstationary control system with delay of neutral type on the whole interval
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2023
SP  - 1
EP  - 17
VL  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a0/
LA  - ru
ID  - CMFD_2023_69_1_a0
ER  - 
%0 Journal Article
%A A. S. Adkhamova
%T Smoothness of solutions to the damping problem for nonstationary control system with delay of neutral type on the whole interval
%J Contemporary Mathematics. Fundamental Directions
%D 2023
%P 1-17
%V 69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a0/
%G ru
%F CMFD_2023_69_1_a0
A. S. Adkhamova. Smoothness of solutions to the damping problem for nonstationary control system with delay of neutral type on the whole interval. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 69 (2023) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/CMFD_2023_69_1_a0/

[1] Adkhamova A. Sh., “Gladkost reshenii zadachi ob uspokoenii nestatsionarnoi sistemy upravleniya s posledeistviem”, Sovrem. mat. Fundam. napravl., 68, no. 1, 2022, 14–24 | MR

[2] Adkhamova A. Sh., Skubachevskii A. L., “Ob odnoi zadache uspokoeniya nestatsionarnoi sistemy upravleniya s posledeistviem”, Sovrem. mat. Fundam. napravl., 65, no. 4, 2019, 547–556

[3] Adkhamova A. Sh., Skubachevskii A. L., “Ob uspokoenii sistemy upravleniya s posledeistviem neitralnogo tipa”, Dokl. RAN, 490:1 (2020), 81–84 | DOI | MR

[4] Kamenskii A. G., “Kraevye zadachi dlya uravnenii s formalno simmetrichnymi differentsialno-raznostnymi operatorami”, Diff. uravn., 10:5 (1976), 815–824

[5] Kamenskii G. A., Myshkis A. D., “K postanovke kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimsya argumentom i neskolkimi starshimi chlenami”, Diff. uravn., 10:3 (1974), 409–418

[6] Kamenskii G. A., Myshkis A. D., Skubachevskii A. L., “O gladkikh resheniyakh kraevoi zadachi dlya differentsialno-raznostnogo uravneniya neitralnogo tipa”, Ukr. mat. zh., 37:5 (1985), 581–585 | MR

[7] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[8] Kryazhimskii A. V., Maksimov V. I., Osipov Yu. S., “O pozitsionnom modelirovanii v dinamicheskikh sistemakh”, Prikl. mat. mekh., 47:6 (1983), 883–890 | MR

[9] Leonov D. D., “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, Sovrem. mat. Fundam. napravl., 37, 2010, 28–37

[10] Osipov Yu. S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Diff. uravn., 1:5 (1965), 605–618 | Zbl

[11] Skubachevskii A. L., “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, Dokl. RAN, 335:2 (1994), 157–160 | Zbl

[12] Skubachevskii A. L., Ivanov N. O., “Vtoraya kraevaya zadacha dlya differentsialno-raznostnykh uravnenii”, Dokl. RAN, 500:1 (2021), 74–77 | DOI | Zbl

[13] Skubachevskii A. L., Ivanov N. O., “Ob obobschennykh resheniyakh vtoroi kraevoi zadachi dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, Sovrem. mat. Fundam. napravl., 67, no. 3, 2021, 576–595

[14] Adkhamova A. S., Skubachevskii A. L., “Damping problem for multidimensional control system with delays”, Distrib. Comput. Commun. Networks, 678 (2016), 612–623 | DOI | Zbl

[15] Banks H. T., Kent G. A., “Control of functional differential equations of retarded and neutral type to target sets in function space”, SIAM J. Control, 10:4 (1972), 567–593 | DOI | MR | Zbl

[16] Baumstein A. I., Skubachevskii A. L., “On smooth solutions of the boundary-value problems for the systems of differential-difference equations”, Nonlinear Anal., 25:7 (1995), 655–668 | DOI | MR | Zbl

[17] Kent G. A., “A maximum principle for optimal control problems with neutral functional differential systems”, Bull. Am. Math. Soc., 77:4 (1971), 565–570 | DOI | MR | Zbl

[18] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhauser, Basel—Boston—Berlin, 1997 | MR | Zbl