Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_4_a9, author = {A. I. Shafarevich and O. A. Shchegortsova}, title = {Maslov complex germ and semiclassical contracted states in the {Cauchy} problem for the {Schr\"odinger} equation with delta potential}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {704--715}, publisher = {mathdoc}, volume = {68}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a9/} }
TY - JOUR AU - A. I. Shafarevich AU - O. A. Shchegortsova TI - Maslov complex germ and semiclassical contracted states in the Cauchy problem for the Schr\"odinger equation with delta potential JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 704 EP - 715 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a9/ LA - ru ID - CMFD_2022_68_4_a9 ER -
%0 Journal Article %A A. I. Shafarevich %A O. A. Shchegortsova %T Maslov complex germ and semiclassical contracted states in the Cauchy problem for the Schr\"odinger equation with delta potential %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 704-715 %V 68 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a9/ %G ru %F CMFD_2022_68_4_a9
A. I. Shafarevich; O. A. Shchegortsova. Maslov complex germ and semiclassical contracted states in the Cauchy problem for the Schr\"odinger equation with delta potential. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 704-715. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a9/
[1] Berezin F. A., Faddeev L. D., “Zamechanie ob uravnenii Shredingera s singulyarnym potentsialom”, Dokl. AN SSSR, 137:5 (1961), 1011–1014
[2] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR
[3] Maslov V. P., Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988
[4] Maslov V. P., Fedoryuk M. V., Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR
[5] Ratyu T., Filatova T. A., Shafarevich A. I., “Nekompaktnye lagranzhevy mnogoobraziya, sootvetstvuyuschie spektralnym seriyam operatora Shredingera s delta-potentsialom na poverkhnosti vrascheniya”, Dokl. RAN, 446:6 (2012), 618–620 | MR
[6] Filatova T. A., Shafarevich A. I., “Kvaziklassicheskie spektralnye serii operatora Shredingera s delta-potentsialom na pryamoi i na sfere”, Teor. mat. fiz., 164:2 (2010), 279–298
[7] Shafarevich A. I., Schegortsova O. A., “Kvaziklassicheskaya asimptotika resheniya zadachi Koshi dlya uravneniya Shredingera s delta-potentsialom, lokalizovannym na poverkhnosti korazmernosti 1”, Tr. MIAN, 310, 2020, 322–331
[8] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H., Solvable models in quantum mechanics, AMS Chelsea Publ., Providence, 2005 | MR
[9] Albeverio S., Kurasov P., Singular perturbations of differential operators, Cambridge Univ. Press, Cambridge, 2000 | MR
[10] Kronig R. de L., Penney W. G., “Quantum mechanics of electrons in crystal lattices”, Proc. R. Soc. London Ser. A, 130 (1931), 499–513 | DOI
[11] Ratiu T. S., Suleimanova A. A., Shafarevich A. I., “Spectral series of the Schrödinger operator with delta-potential on a three-dimensional spherically symmetric manifold”, Russ. J. Math. Phys., 20:3 (2013), 326–335 | DOI | MR