Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_4_a5, author = {M. B. Zvereva}, title = {A model of string system deformations on a star graph with nonlinear condition at the node}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {635--652}, publisher = {mathdoc}, volume = {68}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a5/} }
TY - JOUR AU - M. B. Zvereva TI - A model of string system deformations on a star graph with nonlinear condition at the node JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 635 EP - 652 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a5/ LA - ru ID - CMFD_2022_68_4_a5 ER -
%0 Journal Article %A M. B. Zvereva %T A model of string system deformations on a star graph with nonlinear condition at the node %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 635-652 %V 68 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a5/ %G ru %F CMFD_2022_68_4_a5
M. B. Zvereva. A model of string system deformations on a star graph with nonlinear condition at the node. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 635-652. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a5/
[1] Burlutskaya M. Sh., “Klassicheskoe i obobschennoe resheniya smeshannoi zadachi dlya sistemy uravnenii pervogo poryadka s nepreryvnym potentsialom”, Zhurn. vych. mat. i mat. fiz., 59:3 (2019), 380–390 | MR
[2] Burlutskaya M. Sh., Khromov A. P., “Operator Diraka s potentsialom spetsialnogo vida i periodicheskimi kraevymi usloviyami”, Diff. uravn., 54:5 (2018), 592–601
[3] Diab A. T., Kaldybekova B. K., Penkin O. M., “O kratnosti sobstvennykh znachenii v zadache Shturma—Liuvillya na grafakh”, Mat. zametki, 99:4 (2016), 489–501
[4] Diab A. T., Kuleshov P. A., Penkin O. M., “Otsenka pervogo sobstvennogo znacheniya laplasiana na grafe”, Mat. zametki, 96:6 (2014), 885–895
[5] Kulaev R. Ch., “O svoistve neostsillyatsii uravneniya na grafe”, Sib. mat. zhurn., 57:1 (2016), 85–97 | MR
[6] Kulaev R. Ch., Urtaeva A. A., “Teoremy Shturma o raspredelenii nulei dlya uravneniya chetvertogo poryadka na grafe”, Mat. zametki, 111:6 (2022), 947–952 | MR
[7] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L., Borovskikh A. V., Lazarev K. P., Shabrov S. A., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005
[8] Pokornyi Yu. V., Pryadiev V. L., “Nekotorye voprosy kachestvennoi teorii Shturma—Liuvillya na prostranstvennoi seti”, Usp. mat. nauk, 59:3 (2004), 315–350
[9] Provotorov V. V., Khoang V. N., “Ustoichivost trekhsloinoi simmetrichnoi differentsialno-raznostnoi skhemy v klasse summiruemykh na setepodobnoi oblasti funktsii”, Vestn. ros. un-tov. Mat., 27:137 (2022), 80–94 | MR
[10] Pryadiev V. L., “Integralnyi operator, obraschayuschii nachalno-kraevuyu zadachu dlya giperbolicheskogo uravneniya na geometricheskom grafe”, Dokl. RAN, 423:6 (2008), 737–739 | MR
[11] von Below J., “Kirchhoff laws and diffusion on networks”, Linear Algebra Appl., 121 (1989), 692–697 | DOI
[12] von Below J., Lubary J., Vasseur B., “Some remarks on the eigenvalue multiplicities of the Laplacian on infinite locally finite trees”, Results Math., 63 (2013), 1331–1350 | DOI | MR
[13] Burlutskaya M., “Fourier method in a mixed problem for the wave equation on a graph”, Dokl. Math., 92:3 (2015), 735–738 | DOI | MR
[14] Burlutskaya M., “On a resolvent approach in a mixed problem for the wave equation on a graph”, Mem. Differ. Equ. Math. Phys., 72 (2017), 37–44 | MR
[15] Kamenskii M., Wen Ch.-F., Zvereva M., “On a variational problem for a model of a Stieltjes string with a backlash at the end”, Optimization, 69:9 (2020), 1935–1959 | DOI | MR
[16] Kramar Fijavz M., Mugnolo D., Nicaise S., “Dynamic transmission conditions for linear hyperbolic systems on networks”, J. Evol. Equ., 21:3 (2021), 3639–3673 | DOI | MR
[17] Lubary J. A., Sola-Morales J., “Nonreal eigenvalues for second order differential operators on networks with circuits”, J. Math. Anal. Appl., 275:1 (2002), 238–250 | DOI | MR
[18] Pokorny Yu. V., “The Stieltjes integral and derivatives with respect to the measure in ordinary differential equations”, Dokl. Math., 59:1 (1999), 34–37 | MR
[19] Pokornyi Yu. V., Borovskikh A. V., “Differential equation on networks (geometric graphs)”, J. Math. Sci., 119:6 (2004), 691–718 | DOI | MR
[20] Pokorny Yu. V., Pryadiev V. L., “On conditions for transmission in the Sturm—Liouville problem on a network”, J. Math. Sci., 130:5 (2005), 5013–5045 | DOI | MR
[21] Pokorny Yu. V., Zvereva M. B., Bakhtina Zh. I., “On Stieltjes differentials on geometric graphs”, Dokl. Math., 78:3 (2008), 877–879 | DOI | MR
[22] Pokorny Yu. V., Zvereva M. B., Bakhtina Zh. I., “Stieltjes differential method in the modeling of an irregular system on a geometric graph”, Differ. Equ., 48:8 (2012), 1103–1111 | DOI | MR
[23] Pokorny Yu. V., Zvereva M. B., Shabrov S. A., “Sturm—Liouville oscillation theory for impulsive problems”, Russ. Math. Surv., 63:1 (2008), 109–153 | DOI | MR
[24] Provotorov V. V., Sergeev S. M., Hoang V. N., “Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph”, Vestn. Saint Petersburg Univ. Appl. Math. Comp. Sci. Control Processes, 16:4 (2020), 402–414 | MR
[25] Provotorov V. V., Sergeev S. M., Part A. A., “Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation”, Vestn. Saint Petersburg Univ. Appl. Math. Comp. Sci. Control Processes, 15:1 (2019), 107–117 | MR
[26] Yurko V. A., “Inverse spectral problems for differential operators on spatial networks”, Russ. Math. Surv., 71:3 (2016), 539–584 | DOI | MR