On a system of differential equations with~random parameters
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 621-634
Voir la notice de l'article provenant de la source Math-Net.Ru
An explicit formula for the mathematical expectation and second moment functions of a solution to a linear system of ordinary differential equations with a random parameter and a vector random right-hand side is obtained. The problem is reduced to the deterministic Cauchy problem for systems of first-order linear partial differential equations. We obtain an explicit formula for a solution of linear systems of partial differential equations of the first order with constant coefficients. An example is given showing that random factors can have a stabilizing effect on a linear system of differential equations.
Keywords:
linear system of ordinary differential equations with a random parameter and a vector
random right-hand side, moment functions, system of first-order linear partial differential equations,
explicit solution.
@article{CMFD_2022_68_4_a4,
author = {V. G. Zadorozhniy and G. S. Tikhomirov},
title = {On a system of differential equations with~random parameters},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {621--634},
publisher = {mathdoc},
volume = {68},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a4/}
}
TY - JOUR AU - V. G. Zadorozhniy AU - G. S. Tikhomirov TI - On a system of differential equations with~random parameters JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 621 EP - 634 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a4/ LA - ru ID - CMFD_2022_68_4_a4 ER -
V. G. Zadorozhniy; G. S. Tikhomirov. On a system of differential equations with~random parameters. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 621-634. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a4/