On a system of differential equations with~random parameters
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 621-634.

Voir la notice de l'article provenant de la source Math-Net.Ru

An explicit formula for the mathematical expectation and second moment functions of a solution to a linear system of ordinary differential equations with a random parameter and a vector random right-hand side is obtained. The problem is reduced to the deterministic Cauchy problem for systems of first-order linear partial differential equations. We obtain an explicit formula for a solution of linear systems of partial differential equations of the first order with constant coefficients. An example is given showing that random factors can have a stabilizing effect on a linear system of differential equations.
Keywords: linear system of ordinary differential equations with a random parameter and a vector random right-hand side, moment functions, system of first-order linear partial differential equations, explicit solution.
@article{CMFD_2022_68_4_a4,
     author = {V. G. Zadorozhniy and G. S. Tikhomirov},
     title = {On a system of differential equations with~random parameters},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {621--634},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a4/}
}
TY  - JOUR
AU  - V. G. Zadorozhniy
AU  - G. S. Tikhomirov
TI  - On a system of differential equations with~random parameters
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 621
EP  - 634
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a4/
LA  - ru
ID  - CMFD_2022_68_4_a4
ER  - 
%0 Journal Article
%A V. G. Zadorozhniy
%A G. S. Tikhomirov
%T On a system of differential equations with~random parameters
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 621-634
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a4/
%G ru
%F CMFD_2022_68_4_a4
V. G. Zadorozhniy; G. S. Tikhomirov. On a system of differential equations with~random parameters. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 621-634. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a4/

[1] Adomian D., Stokhasticheskie sistemy, Mir, M., 1987

[2] Borovskikh A. V., Perov A. I., Differentsialnye uravneniya, Yurait, M., 2016

[3] Gelfand I. M., Vilenkin N. Ya., Obobschennye funktsii. Nekotorye primeneniya garmonocheskogo analiza. Osnaschennye gilbertovy prostranstva, Fizmatlit, M., 1961 | MR

[4] Zadorozhnii V. G., Metody variatsionnogo analiza, Reg. i khaot. dinamika, Moskva—Izhevsk, 2006

[5] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fizmatlit, M., 2003

[6] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964

[7] Stepanov V. V., Kurs differentsialnykh uravnenii, MGU, M., 2004

[8] Fedoryuk M. V., Obyknovennye differentsialnye uravneniya, Nauka, M., 1980

[9] Filippov A. F., Sbornik zadach po differentsialnym uravneniyam, Reg. i khaot. dinamika, M.—Izhevsk, 2000

[10] Khasminskii R. Z., Ustoichivost sistem differentsialnykh uravnenii pri sluchainykh vozmuscheniyakh ikh parametrov, Nauka, M., 1969 | MR

[11] Adomian D., Stochastic systems, Academic press, New York—London etc., 1983 | MR

[12] Courant R., Hilbert D., Methods of mathematical physics, v. II, Partial differential equations, Interscience Publishers, New York—London, 1962 | MR