Existence of solution of a free boundary problem for reaction-diffusion systems
Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 716-731.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove the existence of solution of a novel free boundary problem for reaction-diffusion systems describing growth of biological tissues due to cell influx and proliferation. For this aim, we transform it into a problem with fixed boundary, through a change of variables. The new problem thus obtained has space and time dependent coefficients with nonlinear terms. We then prove the existence of solution for the corresponding linear problem, and deduce the existence of solution for the nonlinear problem using the fixed point theorem. Finally, we return to the problem with free boundary to conclude the existence of its solution.
Keywords: free boundary problem, growth of biological tissues
Mots-clés : reaction-diffusion system, existence of solution.
@article{CMFD_2022_68_4_a10,
     author = {G. A. Younes and N. El Khatib and V. A. Volpert},
     title = {Existence of solution of a free boundary problem for reaction-diffusion systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {716--731},
     publisher = {mathdoc},
     volume = {68},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a10/}
}
TY  - JOUR
AU  - G. A. Younes
AU  - N. El Khatib
AU  - V. A. Volpert
TI  - Existence of solution of a free boundary problem for reaction-diffusion systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 716
EP  - 731
VL  - 68
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a10/
LA  - ru
ID  - CMFD_2022_68_4_a10
ER  - 
%0 Journal Article
%A G. A. Younes
%A N. El Khatib
%A V. A. Volpert
%T Existence of solution of a free boundary problem for reaction-diffusion systems
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 716-731
%V 68
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a10/
%G ru
%F CMFD_2022_68_4_a10
G. A. Younes; N. El Khatib; V. A. Volpert. Existence of solution of a free boundary problem for reaction-diffusion systems. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 716-731. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a10/

[1] Bessonov N., Morozova N., Volpert V., “Modeling of branching patterns in plants”, Bull. Math. Biol., 70 (2008), 868–893 | DOI | MR

[2] Fok P.-W., “Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem”, J. Theor. Biol., 314 (2012), 23–33 | DOI | MR

[3] Islam H., Johnston P. R., “A mathematical model for atherosclerotic plaque formation and arterial wall remodelling”, ANZIAM J., 57 (2016), C320–C345 | DOI | MR

[4] Ladyzenskaja O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasi-linear Equations of Parabolic Type, Am. Math. Soc., Providence, 1968 | MR

[5] Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Springer, Basel etc., 1995 | MR

[6] Silva T., Jäger W., Neuss-Radu M., Sequeira A., “Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability”, J. Theor. Biol., 496 (2020), 110229 | DOI | MR

[7] Tao Y., Guo Q., “A free boundary problem modelling cancer radiovirotherapy”, Math. Models Methods Appl. Sci., 17:8 (2007), 1241–1259 | DOI | MR

[8] Yousefnezhad M., Mohammadi S. A., Bozorgnia F., “A free boundary problem for a predator-prey model with nonlinear prey-taxis”, Appl. Math., 63 (2018), 125–147 | DOI | MR