Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_4_a10, author = {G. A. Younes and N. El Khatib and V. A. Volpert}, title = {Existence of solution of a free boundary problem for reaction-diffusion systems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {716--731}, publisher = {mathdoc}, volume = {68}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a10/} }
TY - JOUR AU - G. A. Younes AU - N. El Khatib AU - V. A. Volpert TI - Existence of solution of a free boundary problem for reaction-diffusion systems JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 716 EP - 731 VL - 68 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a10/ LA - ru ID - CMFD_2022_68_4_a10 ER -
%0 Journal Article %A G. A. Younes %A N. El Khatib %A V. A. Volpert %T Existence of solution of a free boundary problem for reaction-diffusion systems %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 716-731 %V 68 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a10/ %G ru %F CMFD_2022_68_4_a10
G. A. Younes; N. El Khatib; V. A. Volpert. Existence of solution of a free boundary problem for reaction-diffusion systems. Contemporary Mathematics. Fundamental Directions, Differential and functional differential equations, Tome 68 (2022) no. 4, pp. 716-731. http://geodesic.mathdoc.fr/item/CMFD_2022_68_4_a10/
[1] Bessonov N., Morozova N., Volpert V., “Modeling of branching patterns in plants”, Bull. Math. Biol., 70 (2008), 868–893 | DOI | MR
[2] Fok P.-W., “Mathematical model of intimal thickening in atherosclerosis: vessel stenosis as a free boundary problem”, J. Theor. Biol., 314 (2012), 23–33 | DOI | MR
[3] Islam H., Johnston P. R., “A mathematical model for atherosclerotic plaque formation and arterial wall remodelling”, ANZIAM J., 57 (2016), C320–C345 | DOI | MR
[4] Ladyzenskaja O. A., Solonnikov V. A., Ural'tseva N. N., Linear and Quasi-linear Equations of Parabolic Type, Am. Math. Soc., Providence, 1968 | MR
[5] Lunardi A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, Springer, Basel etc., 1995 | MR
[6] Silva T., Jäger W., Neuss-Radu M., Sequeira A., “Modeling of the early stage of atherosclerosis with emphasis on the regulation of the endothelial permeability”, J. Theor. Biol., 496 (2020), 110229 | DOI | MR
[7] Tao Y., Guo Q., “A free boundary problem modelling cancer radiovirotherapy”, Math. Models Methods Appl. Sci., 17:8 (2007), 1241–1259 | DOI | MR
[8] Yousefnezhad M., Mohammadi S. A., Bozorgnia F., “A free boundary problem for a predator-prey model with nonlinear prey-taxis”, Appl. Math., 63 (2018), 125–147 | DOI | MR