Order projection in $\mathcal{OA}_r(E,F)$
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 407-423

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate order projections onto different bands in the space of all regular orthogonally additive operators. In particular, we obtain formulas for calculation of the order projections onto the band generated by a directed set of positive orthogonally additive operators and onto the band of all laterally continuous operators.
@article{CMFD_2022_68_3_a1,
     author = {N. A. Dzhusoeva and S. Yu. Itarova and M. A. Pliev},
     title = {Order projection in $\mathcal{OA}_r(E,F)$},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {407--423},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a1/}
}
TY  - JOUR
AU  - N. A. Dzhusoeva
AU  - S. Yu. Itarova
AU  - M. A. Pliev
TI  - Order projection in $\mathcal{OA}_r(E,F)$
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 407
EP  - 423
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a1/
LA  - ru
ID  - CMFD_2022_68_3_a1
ER  - 
%0 Journal Article
%A N. A. Dzhusoeva
%A S. Yu. Itarova
%A M. A. Pliev
%T Order projection in $\mathcal{OA}_r(E,F)$
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 407-423
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a1/
%G ru
%F CMFD_2022_68_3_a1
N. A. Dzhusoeva; S. Yu. Itarova; M. A. Pliev. Order projection in $\mathcal{OA}_r(E,F)$. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 407-423. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a1/