On spaces of vector functions that are holomorphic in an angular domain
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 393-406.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study spaces of vector functions that are holomorphic in the angular domain of the complex plane and with values in a separable Hilbert space. We show that, equipped with the appropriate norms, these spaces are Hilbert spaces.
@article{CMFD_2022_68_3_a0,
     author = {V. V. Vlasov and N. A. Rautian},
     title = {On spaces of vector functions that are holomorphic in an angular domain},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {393--406},
     publisher = {mathdoc},
     volume = {68},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a0/}
}
TY  - JOUR
AU  - V. V. Vlasov
AU  - N. A. Rautian
TI  - On spaces of vector functions that are holomorphic in an angular domain
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 393
EP  - 406
VL  - 68
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a0/
LA  - ru
ID  - CMFD_2022_68_3_a0
ER  - 
%0 Journal Article
%A V. V. Vlasov
%A N. A. Rautian
%T On spaces of vector functions that are holomorphic in an angular domain
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 393-406
%V 68
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a0/
%G ru
%F CMFD_2022_68_3_a0
V. V. Vlasov; N. A. Rautian. On spaces of vector functions that are holomorphic in an angular domain. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 393-406. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a0/

[1] Vlasov V. V., O nekotorykh prostranstvakh vektor-funktsii, golomorfnykh v ugle, No 4177-81, VINITI, 1981

[2] Vlasov V. V., “Kratnaya minimalnost chasti sistemy kornevykh vektorov puchka M. V. Keldysha”, Dokl. AN SSSR, 263:6 (1982), 1289–1293 | MR

[3] Grigoryan Sh. A., “O bazisnosti nepolnykh sistem ratsionalnykh funktsii v uglovykh oblastyakh”, Izv. AN ArmSSR. Mat., 13:5-6 (1978), 461–489

[4] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavlenie funktsii v kompleksnoi oblasti, Nauka, M., 1966 | MR

[5] Dzhrbashyan M. M., Martirosyan V. M., “Teoremy Vinera—Peli i Myuntsa—Sasa”, Izv. AN SSSR, 41:4 (1977), 868–894 | MR | Zbl

[6] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[7] Khille E., Filips R., Funktsionalnyi analiz i polugruppy, Inostrannaya literatura, M., 1962 | MR