On spaces of vector functions that are holomorphic in an angular domain
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 393-406
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study spaces of vector functions that are holomorphic in the angular domain of the complex plane and with values in a separable Hilbert space. We show that, equipped with the appropriate norms, these spaces are Hilbert spaces.
@article{CMFD_2022_68_3_a0,
author = {V. V. Vlasov and N. A. Rautian},
title = {On spaces of vector functions that are holomorphic in an angular domain},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {393--406},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a0/}
}
TY - JOUR AU - V. V. Vlasov AU - N. A. Rautian TI - On spaces of vector functions that are holomorphic in an angular domain JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 393 EP - 406 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a0/ LA - ru ID - CMFD_2022_68_3_a0 ER -
%0 Journal Article %A V. V. Vlasov %A N. A. Rautian %T On spaces of vector functions that are holomorphic in an angular domain %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 393-406 %V 68 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a0/ %G ru %F CMFD_2022_68_3_a0
V. V. Vlasov; N. A. Rautian. On spaces of vector functions that are holomorphic in an angular domain. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 68 (2022) no. 3, pp. 393-406. http://geodesic.mathdoc.fr/item/CMFD_2022_68_3_a0/