Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_2_a0, author = {Yu. E. Gliklikh}, title = {Stochastic equations and inclusions with mean derivatives and~their~applications}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {191--337}, publisher = {mathdoc}, volume = {68}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a0/} }
TY - JOUR AU - Yu. E. Gliklikh TI - Stochastic equations and inclusions with mean derivatives and~their~applications JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 191 EP - 337 VL - 68 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a0/ LA - ru ID - CMFD_2022_68_2_a0 ER -
Yu. E. Gliklikh. Stochastic equations and inclusions with mean derivatives and~their~applications. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 68 (2022) no. 2, pp. 191-337. http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a0/
[1] Azarina S. V., Gliklikh Yu. E., “O razreshimosti neavtonomnykh stokhasticheskikh differentsialnykh uravnenii s tekuschimi skorostyami”, Mat. zametki, 100:1 (2016), 3–12
[2] Aseev S. M., “Suschestvovanie differentsiruemoi odnoznachnoi vetvi u mnogoznachnogo otobrazheniya”, Nekotorye voprosy prikladnoi matematiki i programmnogo obespecheniya EVM, M., 1982, 36–39
[3] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977
[4] Bishop R. L., Krittenden R. Dzh., Geometriya mnogoobrazii, Mir, M., 1967
[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005
[6] Borisovich Yu. G., Gliklikh Yu. E., “O chisle Lefshetsa dlya odnogo klassa mnogoznachnykh otobrazhenii”, Sedmaya letnyaya matematicheskaya shkola, Inst. matematiki AN USSR, Kiev, 1970, 283–294
[7] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986
[8] Gelman B. D., “Nepreryvnye approksimatsii mnogoznachnykh otobrazhenii i nepodvizhnye tochki”, Mat. zametki, 78:2 (2005), 212–222
[9] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971
[10] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 3, Nauka, M., 1975
[11] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Fizmatlit, M., 1977
[12] Gliklikh Yu. E., “Nepodvizhnye tochki mnogoznachnykh otobrazhenii s nevypuklymi obrazami i vraschenie mnogoznachnykh vektornykh polei”, Sbornik trudov aspirantov matematicheskogo fakulteta, VGU, Voronezh, 1972, 30–38
[13] Gliklikh Yu. E., Globalnyi i stokhasticheskii analiz v zadachakh matematicheskoi fiziki, Komkniga, M., 2005
[14] Gliklikh Yu. E., Proizvodnye v srednem sluchainykh protsessov i ikh primeneniya, YuMI VNTs RAN, Vladikavkaz, 2016
[15] Gliklikh Yu. E., “O razreshimosti stokhasticheskikh differentsialnykh uravnenii s osmoticheskimi skorostyami”, Teor. ver. i ee primen., 65:4 (2020), 806–817
[16] Gliklikh Yu. E., Vinokurova N. V., “Uravnenie Nyutona—Nelsona na rassloeniyakh so svyaznostyami”, Fundam. i prikl. mat., 20:3 (2015), 61–81
[17] Gliklikh Yu. E., Schichko T. A., “O polnote stokhasticheskikh potokov, porozhdennykh uravneniyami s tekuschimi skorostyami”, Teor. ver. i ee primen., 64:1 (2019), 3–16
[18] Daletskii Yu. L., Belopolskaya Ya. I., Stokhasticheskie uravneniya i differentsialnaya geometriya, Vyscha Shkola, Kiev, 1989
[19] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970
[20] Iosida K., Funktsionalnyi analiz, Mir, M., 1967
[21] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968
[22] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977
[23] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974
[24] Makarova A. V., “O razreshimosti differentsialnykh vklyuchenii s tekuschimi skorostyami”, Spectral and evolution problems, 22 (2012), 125–128
[25] Myshkis A. D., “Obobschenie teoremy o statsionarnoi tochke dinamicheskoi sistemy vnutri zamknutoi traektorii”, Mat. sbornik, 34:3 (1954), 525–540
[26] Partasarati K., Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1988
[27] Farber M. Sh., “O gladkikh secheniyakh peresecheniya mnogoznachnykh otobrazhenii”, Izv. akad. nauk Az. SSR, 1979, no. 6, 23–28
[28] Freidlin M. I., “O faktorizatsii neotritsatelno opredelennykh matrits”, Teor. ver. i ee primen., 13:2 (1968), 375–378
[29] Chistyakov V. F., Scheglova A. A., Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003
[30] Shestakov A. L., Sviridyuk G. A., “Novyi podkhod k izmereniyu dinamicheski iskazhennykh signalov”, Vestn. Yuzh.-Ural. gos. un-ta, 2010, no. 5, 116–120
[31] Shiryaev A. N., Veroyatnost, Nauka, M., 1989
[32] Shutts B., Geometricheskie metody matematicheskoi fiziki, Mir, M., 1984
[33] Arnol'd V., “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier, 16:1 (1966), 319–361
[34] Aubin J.-P., Cellina A., Differential Inclusions. Set-Valued Maps and Viability Theory, Springer, Berlin etc., 1984
[35] Azarina S. V., Gliklikh Yu. E., “Differential inclusions with mean derivatives”, Dyn. Syst. Appl., 16:1 (2007), 49–71
[36] Azarina S. V., Gliklikh Yu. E., “On differential equations and inclusions with mean derivatives on a compact manifold”, Discuss. Math. Differ. Incl. Control Optim., 27:2 (2007), 385–397
[37] Azarina S. V., Gliklikh Yu. E., “Stochastic differential equations and inclusions with mean derivatives relative to the past”, Int. J. Difference Equ., 4:1 (2009), 27–41
[38] Azarina S. V., Gliklikh Yu. E., “On existence of solutions to stochastic differential equations with current velocities”, Vestn. YuUrGU. Ser. Mat. model. i progr., 8:4 (2015), 100–106
[39] Azarina S. V., Gliklikh Yu. E., Obukhovskii A. V., “Solvability of Langevin differential inclusions with set-valued diffusion terms on Riemannian manifolds”, Appl. Anal., 86:9 (2007), 1105–1116
[40] Azencott R., “Behavior of diffusion semi-groups at infinity”, Bull. Soc. Math. France, 102 (1974), 193–240
[41] Cresson J., Darses S., “Stochastic embedding of dynamical systems”, J. Math. Phys., 48 (2007), 072703, 54 pp.
[42] Deimling K., Multivalued Differential Equations, Walter de Gruyter, Berlin–New York (NY), 1992
[43] Dohrn D., Guerra F., Ruggiero P., “Spinning particles and relativistic particles in framework of Nelson's stochastic mechanics”, Lect. Notes Phys., 106, 1979, 121–127
[44] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. Math., 92:1 (1970), 102–163
[45] Elworthy K. D., Stochastic Differential Equations on Manifolds, Cambridge Univ. Press, Cambridge, 1982
[46] Elworthy K. D., Le Jan Y., Li X.-M., The Geometry of Filtering, Birkhäuser, Basel, 2010
[47] Gliklikh Yu. E., Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics, Kluwer Academic Publishers, Dordrecht, 1996
[48] Gliklikh Yu. E., Global Analysis in Mathematical Physics. Geometric and Stochastic Methods, Springer, New York, 1997
[49] Gliklikh Yu. E., “Solutions of Burgers, Reynolds, and Navier–Stokes equations via stochastic perturbations of inviscid flows”, J. Nonlinear Math. Phys., 17, Suppl. 1 (2010), 15–29
[50] Gliklikh Yu. E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London, 2011
[51] Gliklikh Yu., On time-global solutions of SDE having nowhere vanishing initial densities, Modern Methods in Operator Theory and Harmonic Analysis, Springer Verlag, Berlin, 2019
[52] Gliklikh Yu. E., “Differential inclusions with mean derivatives, having aspherical right-hand sides”, Chebyshevskii sb., 21:2 (2020), 84–93
[53] Gliklikh Yu. E., Makarova A. V., “On solvability of stochastic differential inclusions with current velocities”, Appl. Anal., 91:9 (2012), 1731–1739
[54] Gliklikh Yu. E., Makarova A. V., Zheltikova O. O., “On existence of optimal solutions for stochastic differential equations and inclusions with current velocities”, Appl. Anal., 96:16 (2017), 2917–2927
[55] Gliklikh Yu. E., Mashkov E. Yu., “Stochastic Leontieff type equations and mean derivatives of stochastic processes”, Vestn. YuUrGU. Ser. Mat. model. i progr., 6:2 (2013), 25–39
[56] Gliklikh Yu. E., Mashkov E. Yu., “Stochastic Leontieff type equations with non-constant coefficients”, Appl. Anal., 94:8 (2015), 1614–1623
[57] Gliklikh Yu. E., Mohammed S.-E. A., “Stochastic delay equations and inclusions with mean derivatives on Riemannian manifolds”, Glob. Stoch. Anal., 1:1 (2011), 47–54
[58] Gliklikh Yu. E., Mohammed S.-E. A., “Stochastic delay equations and inclusions with mean derivatives on Riemannian manifolds. II”, Glob. Stoch. Anal., 2:1 (2012), 17–27
[59] Gliklikh Yu. E., Ratiner P. S., “On a certain type of second order differential equations on total spaces of fiber bundles with connections”, Nonlinear Analysis in Geometry and Topology, Hadronic Press, Palm Harbor, 2000, 99–106
[60] Gliklikh Yu. E., Vinokurova N. V., “On the motion of a quantum particle in the classical gauge field in the language of stochastic mechanics”, Commun. Statist. Theory Methods, 40:1 (2011), 9–20
[61] Gliklikh Yu. E., Vinokurova N. V., “On the Newton–Nelson type equations on vector bundles with connections”, Rend. Semin. Mat. Univ. Politec. Torino, 71:2 (2013), 219–226
[62] Gliklikh Yu. E., Zalygaeva M. E., “Non-Newtonian fluids and stochastic analysis on the groups of diffeomorphisms”, Appl. Anal., 94:6 (2015), 1116–1127
[63] Gliklikh Yu. E., Zalygaeva M. E., “On derivation of Oskolkov's equations for non-compressible viscous Kelvin–Voight fluid by stochastic analysis on the groups of diffeomorphisms”, Glob. Stoch. Anal., 6:2 (2019), 69–77
[64] Gliklikh Yu. E., Zheltikova O. O., “On existence of optimal solutions for stochastic differential inclusions with mean derivatives”, Appl. Anal., 93:1 (2014), 35–46
[65] Gliklikh Yu. E., Zheltikova O. O., “Stochastic equations and inclusions with mean derivatives and some applications. Optimal solutions for inclusions of geometric Brownian motion type”, Methodol. Comput. Appl. Probab., 17:1 (2015), 91–105
[66] Gliklikh Yu. E., Zheltikova O. O., “On existence of optimal solutions to stochastic differential inclusions of geometric Brownian motion type with current velocities”, Glob. Stoch. Anal., 5:2 (2018), 101–109
[67] Gliklikh Yu. E., Zheltikova O. O., “Stochastic differential inclusions with mean derivatives having lower-semicontinuous right-hand sides”, Commun. Stoch. Anal., 14:1–2 (2020), 49–54
[68] Gliklikh Yu. E., Zheltikova O. O., “Differential inclusions with mean derivatives having extreme right-hand sides and optimal control”, Appl. Anal., 100:9 (2021), 2020–2028
[69] Guerra F., Ruggiero P., “A note on relativistic Markov processes”, Lett. Nuovo Cimento, 23:16 (1978), 529–534
[70] Haussmann U. G., Pardoux E., “Time reversal diffusions”, Ann. Prob., 14:4 (1986), 1188–1206
[71] Jeulin T., Yor M., “Filtration des ponts Browniens et equations différentielles stochastiques lineares”, Séminaire de Probabilités, XXIV, Springer, Berlin–Heidelberg, 1990, 227–265
[72] Kamenskii M., Obukhovskiĭ V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New York, 2001
[73] Klein F., Vorlesungen Über Höhere Geometrie, dritte Auflage bearbeitet und herausgegaben von W. Blaschke, Julius Springer, Berlin, 1926
[74] Kryszewski W., Homotopy Properties of Set-Valued Mappings, Torun University, Torun, 1997
[75] Leandre R., Mohammed S. E. A., “Stochastic functional differential equations on manifolds”, Probab. Theory Related Fields, 121:1 (2001), 117–135
[76] Li X.-M., “Properties at infinity of diffusion semigroups and stochastic flows via weak uniform covers”, Potential Anal., 3:4 (1994), 339–357
[77] Makarova A. V., “On solvability of stochastic differential inclusions with current velocities. II”, Glob. Stoch. Anal., 2:1 (2012), 101–112
[78] Meyer P. A., “A differential geometric formalism for the Itô calculus”, Lecture Notes in Math., 851, 1981, 256–270
[79] Nash J., “The imbedding problem for Riemannian manifolds”, Ann. Math., 63:1 (1956), 20–63
[80] Nelson E., “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085
[81] Nelson E., Dynamical Theory of Brownian Motion, Princeton Univ. Press, Princeton, 1967
[82] Nelson E., Quantum Fluctuations, Princeton Univ. Press, Princeton, 1985
[83] Schwartz L., “Processus de Markov et desingration regulieres”, Ann. Inst. Fourier (Grenoble), 27 (1977), 211–277
[84] Schwartz L., Semimartingales and Their Stochastic Calculus on Manifolds, Montreal Univ. Press, Montreal, 1984
[85] Schwartz L., “Le semi-groupe d'une diffusion en liaison avec les trajectories”, Séminaire de Probabilités, XXIII, Springer, Berlin etc., 1989, 326–342
[86] Shestakov A. L., Sviridyuk G. A., “Optimal measurement of dynamically distorted signals”, Vestn. YuUrGU. Ser. Mat. model. i progr., 2011, no. 17, 70–75
[87] Shestakov A. L., Sviridyuk G. A., “On the measurement of the «white noise»”, Vestn. YuUrGU. Ser. Mat. model. i progr., 2012, no. 27, 99–108
[88] Zastawniak T., “A relativistic version of Nelson's stochastic mechanics”, Europhys. Lett., 13 (1990), 13–17
[89] Zastawniak T., “Markov diffusion in relativistic stochastic mechanics”, Proceedings of Swansea Conference on Stochastic Mechanics, World Scientific, Singapore, 1992, 280–297