Stochastic equations and inclusions with mean derivatives and~their~applications
Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 68 (2022) no. 2, pp. 191-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is a detailed presentation of the results, mainly obtained in recent years by the author and his school of the research of mean derivatives of random processes, stochastic equations and inclusions with mean derivatives, as well as their applications in various mathematical disciplines, mainly in mathematical physics. In addition, the work contains introductory material on mean derivatives by E. Nelson, who introduced this concept in the 60s of the XXs century, the results of other researchers on this topic, and preliminary concepts from various areas of mathematics used in this work.
@article{CMFD_2022_68_2_a0,
     author = {Yu. E. Gliklikh},
     title = {Stochastic equations and inclusions with mean derivatives and~their~applications},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {191--337},
     publisher = {mathdoc},
     volume = {68},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a0/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - Stochastic equations and inclusions with mean derivatives and~their~applications
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 191
EP  - 337
VL  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a0/
LA  - ru
ID  - CMFD_2022_68_2_a0
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T Stochastic equations and inclusions with mean derivatives and~their~applications
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 191-337
%V 68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a0/
%G ru
%F CMFD_2022_68_2_a0
Yu. E. Gliklikh. Stochastic equations and inclusions with mean derivatives and~their~applications. Contemporary Mathematics. Fundamental Directions, Contemporary Mathematics. Fundamental Directions, Tome 68 (2022) no. 2, pp. 191-337. http://geodesic.mathdoc.fr/item/CMFD_2022_68_2_a0/

[1] Azarina S. V., Gliklikh Yu. E., “O razreshimosti neavtonomnykh stokhasticheskikh differentsialnykh uravnenii s tekuschimi skorostyami”, Mat. zametki, 100:1 (2016), 3–12

[2] Aseev S. M., “Suschestvovanie differentsiruemoi odnoznachnoi vetvi u mnogoznachnogo otobrazheniya”, Nekotorye voprosy prikladnoi matematiki i programmnogo obespecheniya EVM, M., 1982, 36–39

[3] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[4] Bishop R. L., Krittenden R. Dzh., Geometriya mnogoobrazii, Mir, M., 1967

[5] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, KomKniga, M., 2005

[6] Borisovich Yu. G., Gliklikh Yu. E., “O chisle Lefshetsa dlya odnogo klassa mnogoznachnykh otobrazhenii”, Sedmaya letnyaya matematicheskaya shkola, Inst. matematiki AN USSR, Kiev, 1970, 283–294

[7] Vatanabe S., Ikeda N., Stokhasticheskie differentsialnye uravneniya i diffuzionnye protsessy, Nauka, M., 1986

[8] Gelman B. D., “Nepreryvnye approksimatsii mnogoznachnykh otobrazhenii i nepodvizhnye tochki”, Mat. zametki, 78:2 (2005), 212–222

[9] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971

[10] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 3, Nauka, M., 1975

[11] Gikhman I. I., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Fizmatlit, M., 1977

[12] Gliklikh Yu. E., “Nepodvizhnye tochki mnogoznachnykh otobrazhenii s nevypuklymi obrazami i vraschenie mnogoznachnykh vektornykh polei”, Sbornik trudov aspirantov matematicheskogo fakulteta, VGU, Voronezh, 1972, 30–38

[13] Gliklikh Yu. E., Globalnyi i stokhasticheskii analiz v zadachakh matematicheskoi fiziki, Komkniga, M., 2005

[14] Gliklikh Yu. E., Proizvodnye v srednem sluchainykh protsessov i ikh primeneniya, YuMI VNTs RAN, Vladikavkaz, 2016

[15] Gliklikh Yu. E., “O razreshimosti stokhasticheskikh differentsialnykh uravnenii s osmoticheskimi skorostyami”, Teor. ver. i ee primen., 65:4 (2020), 806–817

[16] Gliklikh Yu. E., Vinokurova N. V., “Uravnenie Nyutona—Nelsona na rassloeniyakh so svyaznostyami”, Fundam. i prikl. mat., 20:3 (2015), 61–81

[17] Gliklikh Yu. E., Schichko T. A., “O polnote stokhasticheskikh potokov, porozhdennykh uravneniyami s tekuschimi skorostyami”, Teor. ver. i ee primen., 64:1 (2019), 3–16

[18] Daletskii Yu. L., Belopolskaya Ya. I., Stokhasticheskie uravneniya i differentsialnaya geometriya, Vyscha Shkola, Kiev, 1989

[19] Zhelobenko D. P., Kompaktnye gruppy Li i ikh predstavleniya, Nauka, M., 1970

[20] Iosida K., Funktsionalnyi analiz, Mir, M., 1967

[21] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1968

[22] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977

[23] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov, Nauka, M., 1974

[24] Makarova A. V., “O razreshimosti differentsialnykh vklyuchenii s tekuschimi skorostyami”, Spectral and evolution problems, 22 (2012), 125–128

[25] Myshkis A. D., “Obobschenie teoremy o statsionarnoi tochke dinamicheskoi sistemy vnutri zamknutoi traektorii”, Mat. sbornik, 34:3 (1954), 525–540

[26] Partasarati K., Vvedenie v teoriyu veroyatnostei i teoriyu mery, Mir, M., 1988

[27] Farber M. Sh., “O gladkikh secheniyakh peresecheniya mnogoznachnykh otobrazhenii”, Izv. akad. nauk Az. SSR, 1979, no. 6, 23–28

[28] Freidlin M. I., “O faktorizatsii neotritsatelno opredelennykh matrits”, Teor. ver. i ee primen., 13:2 (1968), 375–378

[29] Chistyakov V. F., Scheglova A. A., Izbrannye glavy teorii algebro-differentsialnykh sistem, Nauka, Novosibirsk, 2003

[30] Shestakov A. L., Sviridyuk G. A., “Novyi podkhod k izmereniyu dinamicheski iskazhennykh signalov”, Vestn. Yuzh.-Ural. gos. un-ta, 2010, no. 5, 116–120

[31] Shiryaev A. N., Veroyatnost, Nauka, M., 1989

[32] Shutts B., Geometricheskie metody matematicheskoi fiziki, Mir, M., 1984

[33] Arnol'd V., “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier, 16:1 (1966), 319–361

[34] Aubin J.-P., Cellina A., Differential Inclusions. Set-Valued Maps and Viability Theory, Springer, Berlin etc., 1984

[35] Azarina S. V., Gliklikh Yu. E., “Differential inclusions with mean derivatives”, Dyn. Syst. Appl., 16:1 (2007), 49–71

[36] Azarina S. V., Gliklikh Yu. E., “On differential equations and inclusions with mean derivatives on a compact manifold”, Discuss. Math. Differ. Incl. Control Optim., 27:2 (2007), 385–397

[37] Azarina S. V., Gliklikh Yu. E., “Stochastic differential equations and inclusions with mean derivatives relative to the past”, Int. J. Difference Equ., 4:1 (2009), 27–41

[38] Azarina S. V., Gliklikh Yu. E., “On existence of solutions to stochastic differential equations with current velocities”, Vestn. YuUrGU. Ser. Mat. model. i progr., 8:4 (2015), 100–106

[39] Azarina S. V., Gliklikh Yu. E., Obukhovskii A. V., “Solvability of Langevin differential inclusions with set-valued diffusion terms on Riemannian manifolds”, Appl. Anal., 86:9 (2007), 1105–1116

[40] Azencott R., “Behavior of diffusion semi-groups at infinity”, Bull. Soc. Math. France, 102 (1974), 193–240

[41] Cresson J., Darses S., “Stochastic embedding of dynamical systems”, J. Math. Phys., 48 (2007), 072703, 54 pp.

[42] Deimling K., Multivalued Differential Equations, Walter de Gruyter, Berlin–New York (NY), 1992

[43] Dohrn D., Guerra F., Ruggiero P., “Spinning particles and relativistic particles in framework of Nelson's stochastic mechanics”, Lect. Notes Phys., 106, 1979, 121–127

[44] Ebin D. G., Marsden J., “Groups of diffeomorphisms and the motion of an incompressible fluid”, Ann. Math., 92:1 (1970), 102–163

[45] Elworthy K. D., Stochastic Differential Equations on Manifolds, Cambridge Univ. Press, Cambridge, 1982

[46] Elworthy K. D., Le Jan Y., Li X.-M., The Geometry of Filtering, Birkhäuser, Basel, 2010

[47] Gliklikh Yu. E., Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics, Kluwer Academic Publishers, Dordrecht, 1996

[48] Gliklikh Yu. E., Global Analysis in Mathematical Physics. Geometric and Stochastic Methods, Springer, New York, 1997

[49] Gliklikh Yu. E., “Solutions of Burgers, Reynolds, and Navier–Stokes equations via stochastic perturbations of inviscid flows”, J. Nonlinear Math. Phys., 17, Suppl. 1 (2010), 15–29

[50] Gliklikh Yu. E., Global and Stochastic Analysis with Applications to Mathematical Physics, Springer, London, 2011

[51] Gliklikh Yu., On time-global solutions of SDE having nowhere vanishing initial densities, Modern Methods in Operator Theory and Harmonic Analysis, Springer Verlag, Berlin, 2019

[52] Gliklikh Yu. E., “Differential inclusions with mean derivatives, having aspherical right-hand sides”, Chebyshevskii sb., 21:2 (2020), 84–93

[53] Gliklikh Yu. E., Makarova A. V., “On solvability of stochastic differential inclusions with current velocities”, Appl. Anal., 91:9 (2012), 1731–1739

[54] Gliklikh Yu. E., Makarova A. V., Zheltikova O. O., “On existence of optimal solutions for stochastic differential equations and inclusions with current velocities”, Appl. Anal., 96:16 (2017), 2917–2927

[55] Gliklikh Yu. E., Mashkov E. Yu., “Stochastic Leontieff type equations and mean derivatives of stochastic processes”, Vestn. YuUrGU. Ser. Mat. model. i progr., 6:2 (2013), 25–39

[56] Gliklikh Yu. E., Mashkov E. Yu., “Stochastic Leontieff type equations with non-constant coefficients”, Appl. Anal., 94:8 (2015), 1614–1623

[57] Gliklikh Yu. E., Mohammed S.-E. A., “Stochastic delay equations and inclusions with mean derivatives on Riemannian manifolds”, Glob. Stoch. Anal., 1:1 (2011), 47–54

[58] Gliklikh Yu. E., Mohammed S.-E. A., “Stochastic delay equations and inclusions with mean derivatives on Riemannian manifolds. II”, Glob. Stoch. Anal., 2:1 (2012), 17–27

[59] Gliklikh Yu. E., Ratiner P. S., “On a certain type of second order differential equations on total spaces of fiber bundles with connections”, Nonlinear Analysis in Geometry and Topology, Hadronic Press, Palm Harbor, 2000, 99–106

[60] Gliklikh Yu. E., Vinokurova N. V., “On the motion of a quantum particle in the classical gauge field in the language of stochastic mechanics”, Commun. Statist. Theory Methods, 40:1 (2011), 9–20

[61] Gliklikh Yu. E., Vinokurova N. V., “On the Newton–Nelson type equations on vector bundles with connections”, Rend. Semin. Mat. Univ. Politec. Torino, 71:2 (2013), 219–226

[62] Gliklikh Yu. E., Zalygaeva M. E., “Non-Newtonian fluids and stochastic analysis on the groups of diffeomorphisms”, Appl. Anal., 94:6 (2015), 1116–1127

[63] Gliklikh Yu. E., Zalygaeva M. E., “On derivation of Oskolkov's equations for non-compressible viscous Kelvin–Voight fluid by stochastic analysis on the groups of diffeomorphisms”, Glob. Stoch. Anal., 6:2 (2019), 69–77

[64] Gliklikh Yu. E., Zheltikova O. O., “On existence of optimal solutions for stochastic differential inclusions with mean derivatives”, Appl. Anal., 93:1 (2014), 35–46

[65] Gliklikh Yu. E., Zheltikova O. O., “Stochastic equations and inclusions with mean derivatives and some applications. Optimal solutions for inclusions of geometric Brownian motion type”, Methodol. Comput. Appl. Probab., 17:1 (2015), 91–105

[66] Gliklikh Yu. E., Zheltikova O. O., “On existence of optimal solutions to stochastic differential inclusions of geometric Brownian motion type with current velocities”, Glob. Stoch. Anal., 5:2 (2018), 101–109

[67] Gliklikh Yu. E., Zheltikova O. O., “Stochastic differential inclusions with mean derivatives having lower-semicontinuous right-hand sides”, Commun. Stoch. Anal., 14:1–2 (2020), 49–54

[68] Gliklikh Yu. E., Zheltikova O. O., “Differential inclusions with mean derivatives having extreme right-hand sides and optimal control”, Appl. Anal., 100:9 (2021), 2020–2028

[69] Guerra F., Ruggiero P., “A note on relativistic Markov processes”, Lett. Nuovo Cimento, 23:16 (1978), 529–534

[70] Haussmann U. G., Pardoux E., “Time reversal diffusions”, Ann. Prob., 14:4 (1986), 1188–1206

[71] Jeulin T., Yor M., “Filtration des ponts Browniens et equations différentielles stochastiques lineares”, Séminaire de Probabilités, XXIV, Springer, Berlin–Heidelberg, 1990, 227–265

[72] Kamenskii M., Obukhovskiĭ V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin–New York, 2001

[73] Klein F., Vorlesungen Über Höhere Geometrie, dritte Auflage bearbeitet und herausgegaben von W. Blaschke, Julius Springer, Berlin, 1926

[74] Kryszewski W., Homotopy Properties of Set-Valued Mappings, Torun University, Torun, 1997

[75] Leandre R., Mohammed S. E. A., “Stochastic functional differential equations on manifolds”, Probab. Theory Related Fields, 121:1 (2001), 117–135

[76] Li X.-M., “Properties at infinity of diffusion semigroups and stochastic flows via weak uniform covers”, Potential Anal., 3:4 (1994), 339–357

[77] Makarova A. V., “On solvability of stochastic differential inclusions with current velocities. II”, Glob. Stoch. Anal., 2:1 (2012), 101–112

[78] Meyer P. A., “A differential geometric formalism for the Itô calculus”, Lecture Notes in Math., 851, 1981, 256–270

[79] Nash J., “The imbedding problem for Riemannian manifolds”, Ann. Math., 63:1 (1956), 20–63

[80] Nelson E., “Derivation of the Schrödinger equation from Newtonian mechanics”, Phys. Rev., 150:4 (1966), 1079–1085

[81] Nelson E., Dynamical Theory of Brownian Motion, Princeton Univ. Press, Princeton, 1967

[82] Nelson E., Quantum Fluctuations, Princeton Univ. Press, Princeton, 1985

[83] Schwartz L., “Processus de Markov et desingration regulieres”, Ann. Inst. Fourier (Grenoble), 27 (1977), 211–277

[84] Schwartz L., Semimartingales and Their Stochastic Calculus on Manifolds, Montreal Univ. Press, Montreal, 1984

[85] Schwartz L., “Le semi-groupe d'une diffusion en liaison avec les trajectories”, Séminaire de Probabilités, XXIII, Springer, Berlin etc., 1989, 326–342

[86] Shestakov A. L., Sviridyuk G. A., “Optimal measurement of dynamically distorted signals”, Vestn. YuUrGU. Ser. Mat. model. i progr., 2011, no. 17, 70–75

[87] Shestakov A. L., Sviridyuk G. A., “On the measurement of the «white noise»”, Vestn. YuUrGU. Ser. Mat. model. i progr., 2012, no. 27, 99–108

[88] Zastawniak T., “A relativistic version of Nelson's stochastic mechanics”, Europhys. Lett., 13 (1990), 13–17

[89] Zastawniak T., “Markov diffusion in relativistic stochastic mechanics”, Proceedings of Swansea Conference on Stochastic Mechanics, World Scientific, Singapore, 1992, 280–297