Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_1_a6, author = {D. G. Rakhimov and D. Akhmadzhanova}, title = {On analytic perturbations of linear equations in the case of incomplete generalized {Jordan} set}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {80--94}, publisher = {mathdoc}, volume = {68}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a6/} }
TY - JOUR AU - D. G. Rakhimov AU - D. Akhmadzhanova TI - On analytic perturbations of linear equations in the case of incomplete generalized Jordan set JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 80 EP - 94 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a6/ LA - ru ID - CMFD_2022_68_1_a6 ER -
%0 Journal Article %A D. G. Rakhimov %A D. Akhmadzhanova %T On analytic perturbations of linear equations in the case of incomplete generalized Jordan set %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 80-94 %V 68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a6/ %G ru %F CMFD_2022_68_1_a6
D. G. Rakhimov; D. Akhmadzhanova. On analytic perturbations of linear equations in the case of incomplete generalized Jordan set. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 80-94. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a6/
[1] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR
[2] Loginov B. V., “K teorii vozmuschenii dlya neodnorodnykh uravnenii”, Issledovaniya po differentsialnym uravneniyam i ikh prilozheniyam, Ilym, Alma-Ata, 1965, 95–101
[3] Loginov B. V., Rusak Yu. B., “Obobschennaya zhordanova struktura v teorii vetvleniya”, Pryamye i obratnye zadachi dlya uravnenii s chastnymi proizvodnymi, Fan, Tashkent, 1978, 133–148 | MR
[4] Rakhimov D. G., “O vychislenii kratnykh sobstvennykh znachenii reduktsionnym metodom lozhnykh vozmuschenii”, Zhurn. Srednevolzh. mat. ob-va, 2010, no. 3, 106–112
[5] Rakhimov D. G., “O regulyarizatsii kratnykh sobstvennykh znachenii reduktsionnym metodom lozhnykh vozmuschenii”, Vestn. Samar. gos. un-ta. Estestv. ser., 2012, no. 6, 35–41 | MR | Zbl
[6] Rakhimov D. G., Loginov B. V., Vozmuscheniya v zadachakh na sobstvennye znacheniya, Tashkent. univ. inf. tekhn., Tashkent, 2020
[7] Trenogin V. A., “Lineinye uravneniya v prostranstve Banakha s malym parametrom”, Materialy 6 Mezhvuzovskoi fiz.-mat. nauch. konf. Dalnego Vostoka (Khabarovsk, 1967)
[8] Albrecht A., Howlett P., Verma G., “Inversion of operator pencils on Banach space using Jordan chains when the generalized resolvent has an isolated essential singularity”, Linear Algebra Appl., 595 (2020), 33–62 | DOI | MR | Zbl
[9] Albrecht A., Howlett P., Verma G., “Inversion of operator pencils on Hilbert space”, J. Aust. Math. Soc., 108:2 (2020), 145–176 | DOI | MR | Zbl
[10] Avrachenkov K. E., Filar J. A., Howlett P. G., Analytic perturbation theory and its applications, SIAM, Philadelphia, 2013 | MR | Zbl