On analytic perturbations of linear equations in the case of incomplete generalized Jordan set
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 80-94

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the methods of the theory of bifurcations, the problem of perturbation of linear equations by small analytic terms is considered. In contrast to the work of Trenogin [7], the case of an incomplete generalized Jordan set of a linear Fredholm operator acting from one Banach space to another Banach space is studied. A technique is proposed that uses the regularization of the Fredholm operator by a specially constructed finite-dimensional operator.
@article{CMFD_2022_68_1_a6,
     author = {D. G. Rakhimov and D. Akhmadzhanova},
     title = {On analytic perturbations of linear equations in the case of incomplete generalized {Jordan} set},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {80--94},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a6/}
}
TY  - JOUR
AU  - D. G. Rakhimov
AU  - D. Akhmadzhanova
TI  - On analytic perturbations of linear equations in the case of incomplete generalized Jordan set
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 80
EP  - 94
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a6/
LA  - ru
ID  - CMFD_2022_68_1_a6
ER  - 
%0 Journal Article
%A D. G. Rakhimov
%A D. Akhmadzhanova
%T On analytic perturbations of linear equations in the case of incomplete generalized Jordan set
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 80-94
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a6/
%G ru
%F CMFD_2022_68_1_a6
D. G. Rakhimov; D. Akhmadzhanova. On analytic perturbations of linear equations in the case of incomplete generalized Jordan set. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 80-94. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a6/