Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_1_a5, author = {K. K. Muminov and R. A. Gafforov}, title = {Systems of matrix differential equations for surfaces}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {70--79}, publisher = {mathdoc}, volume = {68}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a5/} }
TY - JOUR AU - K. K. Muminov AU - R. A. Gafforov TI - Systems of matrix differential equations for surfaces JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 70 EP - 79 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a5/ LA - ru ID - CMFD_2022_68_1_a5 ER -
K. K. Muminov; R. A. Gafforov. Systems of matrix differential equations for surfaces. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 70-79. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a5/
[1] Bekbaev U. D., Muminov K. K., “Ob ekvivalentnosti i invariantakh elementarnykh poverkhnostei otnositelno simplekticheskoi gruppy”, Uzb. mat. zh., 1997, no. 4, 26–30 | Zbl
[2] Vinberg E. B., Kompaktnye gruppy Li, MGU, M., 1967
[3] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravl., 55, 1989, 137–309
[4] Muminov K. K., “Ekvivalentnost poverkhnostei v kompleksnykh vektornykh prostranstvakh otnositelno Sp(2,C) grupp”, Uzb. mat. zh., 1997, no. 2, 53–57 | Zbl
[5] Muminov K. K., “Ekvivalentnost putei i poverkhnostei dlya deistviya psevdoortogonalnoi gruppy”, Uzb. mat. zh., 2005, no. 2, 35–43
[6] Muminov K. K., Chilin V. I., Ekvivalentnost krivykh v konechnomernykh prostranstvakh, Lambert Academic Publishing, 2015
[7] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989 | MR
[8] Muminov K. K., “Equivalence of multidimensional surfaces with to the acting of classical groups”, Uzbek. Math. J., 2010, no. 1, 99–107 | MR
[9] Muminov K. K., Bekboev U. D., “On differential rational invariants of classical movements groups of vector spaces”, Methods Funct. Anal. Topology, 10:3 (2004), 7–10 | MR | Zbl