Local and 2-local derivations of locally simple Lie algebras
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 59-69

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study local and 2-local derivations of the classical locally simple Lie algebras. Firstly, we prove that every local and 2-local derivations on classical locally simple Lie algebra is a derivation. Further, we show that every local derivation of Borel subalgebras of locally simple Lie algebras is a derivation.
@article{CMFD_2022_68_1_a4,
     author = {Sh. Ayupov and K. Kudaybergenov and B. Yusupov},
     title = {Local and 2-local derivations of locally simple {Lie} algebras},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {59--69},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a4/}
}
TY  - JOUR
AU  - Sh. Ayupov
AU  - K. Kudaybergenov
AU  - B. Yusupov
TI  - Local and 2-local derivations of locally simple Lie algebras
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 59
EP  - 69
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a4/
LA  - ru
ID  - CMFD_2022_68_1_a4
ER  - 
%0 Journal Article
%A Sh. Ayupov
%A K. Kudaybergenov
%A B. Yusupov
%T Local and 2-local derivations of locally simple Lie algebras
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 59-69
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a4/
%G ru
%F CMFD_2022_68_1_a4
Sh. Ayupov; K. Kudaybergenov; B. Yusupov. Local and 2-local derivations of locally simple Lie algebras. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 59-69. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a4/