Local and 2-local derivations of locally simple Lie algebras
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 59-69
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we study local and 2-local derivations of the classical locally simple Lie algebras. Firstly, we prove that every local and 2-local derivations on classical locally simple Lie algebra is a derivation. Further, we show that every local derivation of Borel subalgebras of locally simple Lie algebras is a derivation.
@article{CMFD_2022_68_1_a4,
author = {Sh. Ayupov and K. Kudaybergenov and B. Yusupov},
title = {Local and 2-local derivations of locally simple {Lie} algebras},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {59--69},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a4/}
}
TY - JOUR AU - Sh. Ayupov AU - K. Kudaybergenov AU - B. Yusupov TI - Local and 2-local derivations of locally simple Lie algebras JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 59 EP - 69 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a4/ LA - ru ID - CMFD_2022_68_1_a4 ER -
%0 Journal Article %A Sh. Ayupov %A K. Kudaybergenov %A B. Yusupov %T Local and 2-local derivations of locally simple Lie algebras %J Contemporary Mathematics. Fundamental Directions %D 2022 %P 59-69 %V 68 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a4/ %G ru %F CMFD_2022_68_1_a4
Sh. Ayupov; K. Kudaybergenov; B. Yusupov. Local and 2-local derivations of locally simple Lie algebras. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 59-69. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a4/