Polynomials on regular parabolic manifolds
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 41-58

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we consider the regular parabolic manifold $X$ and polynomials on it. We prove some properties of regular parabolic manifolds and describe polynomials on complements of Weierstrass algebroidal sets.
@article{CMFD_2022_68_1_a3,
     author = {A. A. Atamuratov},
     title = {Polynomials on regular parabolic manifolds},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {41--58},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a3/}
}
TY  - JOUR
AU  - A. A. Atamuratov
TI  - Polynomials on regular parabolic manifolds
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 41
EP  - 58
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a3/
LA  - ru
ID  - CMFD_2022_68_1_a3
ER  - 
%0 Journal Article
%A A. A. Atamuratov
%T Polynomials on regular parabolic manifolds
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 41-58
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a3/
%G ru
%F CMFD_2022_68_1_a3
A. A. Atamuratov. Polynomials on regular parabolic manifolds. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a3/