Optimal difference formulas in the Sobolev space
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 167-177
Voir la notice de l'article provenant de la source Math-Net.Ru
Optimization of computational methods in functional spaces is one of the main problems of computational mathematics. In this paper, algebraic and functional assertions for the problem of difference formulas are discussed. For optimization of difference formulas, i.e., for construction of optimal difference formulas in functional spaces, an important role is played by the extremal function of the given difference formula. In this work, we explicitly find in Sobolev spaces the extremal function of the difference formula and compute the norm of the error functional of the difference formula. Furthermore, we prove existence and uniqueness of the optimal difference formula.
@article{CMFD_2022_68_1_a12,
author = {Kh. M. Shadimetov and R. N. Mirzakabilov},
title = {Optimal difference formulas in the {Sobolev} space},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {167--177},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a12/}
}
TY - JOUR AU - Kh. M. Shadimetov AU - R. N. Mirzakabilov TI - Optimal difference formulas in the Sobolev space JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 167 EP - 177 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a12/ LA - ru ID - CMFD_2022_68_1_a12 ER -
Kh. M. Shadimetov; R. N. Mirzakabilov. Optimal difference formulas in the Sobolev space. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 167-177. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a12/