Some problems of complex analysis in matrix Siegel domains
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 144-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a review of recent results in multivariate complex analysis related to matrix Siegel domains.
@article{CMFD_2022_68_1_a10,
     author = {G. Kh. Khudaibergenov and B. T. Kurbanov},
     title = {Some problems of complex analysis in matrix {Siegel} domains},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {144--156},
     publisher = {mathdoc},
     volume = {68},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a10/}
}
TY  - JOUR
AU  - G. Kh. Khudaibergenov
AU  - B. T. Kurbanov
TI  - Some problems of complex analysis in matrix Siegel domains
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2022
SP  - 144
EP  - 156
VL  - 68
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a10/
LA  - ru
ID  - CMFD_2022_68_1_a10
ER  - 
%0 Journal Article
%A G. Kh. Khudaibergenov
%A B. T. Kurbanov
%T Some problems of complex analysis in matrix Siegel domains
%J Contemporary Mathematics. Fundamental Directions
%D 2022
%P 144-156
%V 68
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a10/
%G ru
%F CMFD_2022_68_1_a10
G. Kh. Khudaibergenov; B. T. Kurbanov. Some problems of complex analysis in matrix Siegel domains. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 144-156. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a10/

[1] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976

[2] Vladimirov V. S., Metody funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[3] Zigel K., Avtomorfnye funktsii neskolkikh kompleksnykh peremennykh, IL, M., 1954

[4] Kosbergenov S., “Golomorfnye avtomorfizmy i integral Bergmana dlya matrichnogo shara”, Dokl. AN RUz, 1998, no. 1, 7–10 | MR | Zbl

[5] Kosbergenov S., Kytmanov A. M., Myslivets S. G., “O granichnoi teoreme Morera dlya klassicheskikh oblastei”, Sib. mat. zh., 40:3 (1999), 595–604 | MR | Zbl

[6] Kurbanov B. T., “O granichnoi teoreme Morera”, Dokl. AN RUz, 2001, no. 8-9, 9–11

[7] Kytmanov A. M., Myslivets S. G., “Ob odnom granichnom analoge teoremy Morera”, Sib. mat. zh., 36:6 (1995), 1350–1353 | MR | Zbl

[8] Pyatetskii-Shapiro I. I., Geometriya klassicheskikh oblastei i teoriya avtomorfnykh funktsii, Nauka, M., 1961 | MR

[9] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb{C}^{n}$, Mir, M., 1984 | MR

[10] Fuks B. A., Spetsialnye glavy teorii analiticheskikh funktsii mnogikh kompleksnykh peremennykh, Fizmatgiz, M., 1962

[11] Khua L.-K., Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959 | MR

[12] Khudaiberganov G., Kurbanov B. T., “Formula Koshi—Sege dlya neogranichennoi realizatsii matrichnogo shara”, Vestn. NUUz, 2006, no. 2, 57–58

[13] Khudaiberganov G., Kurbanov B. T., “Ob odnoi realizatsii klassicheskoi oblasti pervogo tipa”, Uzb. mat. zh., 2014, no. 1, 126–129

[14] Khudaiberganov G., Kytmanov A. M., Shaimkulov B. A., Kompleksnyi analiz v matrichnykh oblastyakh, Sibirskii federalnyi un-t, Krasnoyarsk, 2011

[15] Khudaiberganov G., Khidirov B. B., Rakhmanov U., “Avtomorfizmy matrichnykh sharov”, Vestn. NUUz, 2010, no. 4, 205–209

[16] Shabat B. V., Vvedenie v kompleksnyi analiz, v. 2, Nauka, M., 1985 | MR

[17] Globevnik J., “A boundary Morera theorem”, J. Geom. Anal., 3:3 (1993), 269–277 | DOI | MR | Zbl

[18] Globevnik J., Stout E. L., “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl

[19] Grinberg E., “A boundary analogue of Morera's theorem on the unit ball of $\mathbb{C}^{n}$”, Proc. Am. Math. Soc., 102 (1988), 114–116 | MR | Zbl

[20] Koranyi A., “The Poisson integral for the generalized half planes and bounded symmetric domains”, Ann. Math. (2), 82:2 (1965), 332–350 | DOI | MR | Zbl

[21] Nagel A., Rudin W., “Moebius-invariant function spaces on balls and spheres”, Duke Math. J., 43:4 (1976), 841–865 | DOI | MR | Zbl

[22] Stout E. L., “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR