Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2022_68_1_a10, author = {G. Kh. Khudaibergenov and B. T. Kurbanov}, title = {Some problems of complex analysis in matrix {Siegel} domains}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {144--156}, publisher = {mathdoc}, volume = {68}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a10/} }
TY - JOUR AU - G. Kh. Khudaibergenov AU - B. T. Kurbanov TI - Some problems of complex analysis in matrix Siegel domains JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 144 EP - 156 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a10/ LA - ru ID - CMFD_2022_68_1_a10 ER -
G. Kh. Khudaibergenov; B. T. Kurbanov. Some problems of complex analysis in matrix Siegel domains. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 144-156. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a10/
[1] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1976
[2] Vladimirov V. S., Metody funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR
[3] Zigel K., Avtomorfnye funktsii neskolkikh kompleksnykh peremennykh, IL, M., 1954
[4] Kosbergenov S., “Golomorfnye avtomorfizmy i integral Bergmana dlya matrichnogo shara”, Dokl. AN RUz, 1998, no. 1, 7–10 | MR | Zbl
[5] Kosbergenov S., Kytmanov A. M., Myslivets S. G., “O granichnoi teoreme Morera dlya klassicheskikh oblastei”, Sib. mat. zh., 40:3 (1999), 595–604 | MR | Zbl
[6] Kurbanov B. T., “O granichnoi teoreme Morera”, Dokl. AN RUz, 2001, no. 8-9, 9–11
[7] Kytmanov A. M., Myslivets S. G., “Ob odnom granichnom analoge teoremy Morera”, Sib. mat. zh., 36:6 (1995), 1350–1353 | MR | Zbl
[8] Pyatetskii-Shapiro I. I., Geometriya klassicheskikh oblastei i teoriya avtomorfnykh funktsii, Nauka, M., 1961 | MR
[9] Rudin U., Teoriya funktsii v edinichnom share iz $\mathbb{C}^{n}$, Mir, M., 1984 | MR
[10] Fuks B. A., Spetsialnye glavy teorii analiticheskikh funktsii mnogikh kompleksnykh peremennykh, Fizmatgiz, M., 1962
[11] Khua L.-K., Garmonicheskii analiz funktsii mnogikh kompleksnykh peremennykh v klassicheskikh oblastyakh, IL, M., 1959 | MR
[12] Khudaiberganov G., Kurbanov B. T., “Formula Koshi—Sege dlya neogranichennoi realizatsii matrichnogo shara”, Vestn. NUUz, 2006, no. 2, 57–58
[13] Khudaiberganov G., Kurbanov B. T., “Ob odnoi realizatsii klassicheskoi oblasti pervogo tipa”, Uzb. mat. zh., 2014, no. 1, 126–129
[14] Khudaiberganov G., Kytmanov A. M., Shaimkulov B. A., Kompleksnyi analiz v matrichnykh oblastyakh, Sibirskii federalnyi un-t, Krasnoyarsk, 2011
[15] Khudaiberganov G., Khidirov B. B., Rakhmanov U., “Avtomorfizmy matrichnykh sharov”, Vestn. NUUz, 2010, no. 4, 205–209
[16] Shabat B. V., Vvedenie v kompleksnyi analiz, v. 2, Nauka, M., 1985 | MR
[17] Globevnik J., “A boundary Morera theorem”, J. Geom. Anal., 3:3 (1993), 269–277 | DOI | MR | Zbl
[18] Globevnik J., Stout E. L., “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Math. J., 64:3 (1991), 571–615 | DOI | MR | Zbl
[19] Grinberg E., “A boundary analogue of Morera's theorem on the unit ball of $\mathbb{C}^{n}$”, Proc. Am. Math. Soc., 102 (1988), 114–116 | MR | Zbl
[20] Koranyi A., “The Poisson integral for the generalized half planes and bounded symmetric domains”, Ann. Math. (2), 82:2 (1965), 332–350 | DOI | MR | Zbl
[21] Nagel A., Rudin W., “Moebius-invariant function spaces on balls and spheres”, Duke Math. J., 43:4 (1976), 841–865 | DOI | MR | Zbl
[22] Stout E. L., “The boundary values of holomorphic functions of several complex variables”, Duke Math. J., 44:1 (1977), 105–108 | DOI | MR