Extension of relative-risk power estimator under dependent random censored data
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 1-13
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the considered problem consists in estimation of conditional survival function by right random censoring model in the presence of a covariate. We propose a new estimator of conditional survival function which is extension of relative-risk power estimator of independent censoring and study its large sample properties. We present result of asymptotic normality with the same limiting Gaussian process as for copula-graphic estimator.
@article{CMFD_2022_68_1_a0,
author = {A. A. Abdushukurov},
title = {Extension of relative-risk power estimator under dependent random censored data},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {1--13},
publisher = {mathdoc},
volume = {68},
number = {1},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a0/}
}
TY - JOUR AU - A. A. Abdushukurov TI - Extension of relative-risk power estimator under dependent random censored data JO - Contemporary Mathematics. Fundamental Directions PY - 2022 SP - 1 EP - 13 VL - 68 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a0/ LA - ru ID - CMFD_2022_68_1_a0 ER -
A. A. Abdushukurov. Extension of relative-risk power estimator under dependent random censored data. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 68 (2022) no. 1, pp. 1-13. http://geodesic.mathdoc.fr/item/CMFD_2022_68_1_a0/