Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_4_a9, author = {M. A. Tadzhieva and D. B. Eshmamatova and R. N. Ganikhodzhaev}, title = {Volterra-type quadratic stochastic operators with a homogeneous tournament}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {783--794}, publisher = {mathdoc}, volume = {67}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a9/} }
TY - JOUR AU - M. A. Tadzhieva AU - D. B. Eshmamatova AU - R. N. Ganikhodzhaev TI - Volterra-type quadratic stochastic operators with a homogeneous tournament JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 783 EP - 794 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a9/ LA - ru ID - CMFD_2021_67_4_a9 ER -
%0 Journal Article %A M. A. Tadzhieva %A D. B. Eshmamatova %A R. N. Ganikhodzhaev %T Volterra-type quadratic stochastic operators with a homogeneous tournament %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 783-794 %V 67 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a9/ %G ru %F CMFD_2021_67_4_a9
M. A. Tadzhieva; D. B. Eshmamatova; R. N. Ganikhodzhaev. Volterra-type quadratic stochastic operators with a homogeneous tournament. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 783-794. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a9/
[1] Ganikhodzhaev R. N., Issledovanie po teorii kvadratichnykh stokhasticheskikh operatorov, Diss. d.f.-m.n., IM AN RUz, Tashkent, 1993
[2] Ganikhodzhaev R. N., Abdurakhmanova R. E., “Opisanie kvadratichnykh avtomorfizmov konechno-mernogo simpleksa”, Uzb. mat. zh., 2002, no. 1, 7–16
[3] Ganikhodzhaev R. N., Zhuraboev A. M., “Mnozhestvo ravnovestnykh sostoyanii kvadratichnykh stokhasticheskikh operatorov tipa $V_\pi$”, Uzb. mat. zh., 1998, no. 3, 23–27
[4] Ganikhodzhaev R. N., Karimov A. Z., “O chisle vershin mnozhestva bistokhasticheskikh operatorov”, Uzb. mat. zh., 1999, no. 6, 29–35
[5] Ganikhodzhaev R. N., Saburov M. Kh., “Obobschennaya model nelineinykh operatorov volterrovskogo tipa i funktsii Lyapunova”, Zhurn. SFU. Ser. Mat. Fiz., 1:2 (2008), 188–196 | MR | Zbl
[6] Ganikhodzhaev R. N., Sarimsakov A. T., “Matematicheskaya model kaolitsii biologicheskikh sistem”, Dokl. AN UzSSR, 1992, no. 3, 14–17
[7] Ganikhodzhaev R. N., Tadzhieva M. A., Eshmamatova D. B., “Dinamicheskie svoistva kvadratichnykh gomeomorfizmov konechnomernogo simpleksa”, Itogi nauki i tekhn. Sovrem. mat. i ee prilozh., 144 (2018), 104–109 | MR
[8] Ganikhodzhaev R. N., Eshmamatova D. B., “Kvadratichnye avtomorfizmy simpleksa i asimptoticheskoe povedenie ikh traektorii”, Vladikavkaz. mat. zh., 8:2 (2006), 12–28 | MR | Zbl
[9] Ganikhodzhaev R. N., Eshniyazov A. I., “Bistokhasticheskie kvadratichnye operatory”, Uzb. mat. zh., 2004, no. 3, 29–34
[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984
[11] Khardi G. Kh., Littlvud D. I., Polia G., Neravenstva, Mir, M., 1948
[12] Ferchichi M. R., Yousfi A., “On some attractors of a two-dimensional quadratic map”, Int. J. Dyn. Syst. Differ. Equ., 9:1 (2019), 87–103 | MR | Zbl
[13] Ganikhodzhaev R. N., “Quadratic stochastic operators, Lyapunov function and tournaments”, Sb. Math., 76:2 (1993), 489–506 | DOI | MR
[14] Ganikhodzhaev R. N., “A chart of fixed points and Lyapunov functions for a class of discrete dynamical systems”, Math. Notes, 56:5-6 (1994), 1125–1131 | DOI | MR | Zbl
[15] Ganikhodzhaev R. N., Mukhamedov F. M., Rozikov U. A., “Quadratic stochastic operators: Results and open problems”, Infin. Dimens. Anal. Quantum. Probab. Relat., 14:2 (2011), 279–335 | DOI | MR | Zbl
[16] Galor O., Discrete dynamical systems, Springer, Berlin, 2007 | Zbl
[17] Gard T. C., Hallam T. G., “Persistence in food webs. I. Lotka—Volterra food chains”, Bull. Math. Biol., 41:6 (1979), 877–891 | MR | Zbl
[18] Harary F., Graph theory, Addison-Wesley, Reading, etc., 1969 | Zbl
[19] Hofbauer J., Sigmund K., The theory of evolution and dynamical systems: Mathematical aspects of selection, Cambridge Univ. Press, Cambridge, 1988 | Zbl
[20] Hofbauer J., Sigmund K., Evolutionary games and population dynamics, Cambridge Univ. Press, Cambridge, 1998 | Zbl
[21] Jamilov U. U., “The dynamics of Lotka—Volterra operators on $S^{2}$”, Abst. Conf. «New Results of Mathematics and Their Applications» (Samarkand, May 14-15, 2018), 108–110
[22] Jenks R. D., “Homogeneous multidimensional differential systems for mathematical models”, J. Differ. Equ., 4:4 (1968), 549–565 | DOI | MR | Zbl
[23] Moon J. W., Topics on tournaments, Holt, Rinehart and Winston, New York, etc., 1968 | Zbl