Volterra-type quadratic stochastic operators with a homogeneous tournament
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 783-794.

Voir la notice de l'article provenant de la source Math-Net.Ru

As is known [1], each quadratic stochastic operator of Volterra type acting on a finite-dimensional simplex defines a certain tournament, the properties of which make it possible to study the asymptotic behavior of the trajectories of this Volterra operator. In this paper, we introduce the concept of a homogeneous tournament and study the dynamic properties of Volterra operators corresponding to homogeneous tournaments in the simplex $S^{4}$.
@article{CMFD_2021_67_4_a9,
     author = {M. A. Tadzhieva and D. B. Eshmamatova and R. N. Ganikhodzhaev},
     title = {Volterra-type quadratic stochastic operators with a homogeneous tournament},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {783--794},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a9/}
}
TY  - JOUR
AU  - M. A. Tadzhieva
AU  - D. B. Eshmamatova
AU  - R. N. Ganikhodzhaev
TI  - Volterra-type quadratic stochastic operators with a homogeneous tournament
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 783
EP  - 794
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a9/
LA  - ru
ID  - CMFD_2021_67_4_a9
ER  - 
%0 Journal Article
%A M. A. Tadzhieva
%A D. B. Eshmamatova
%A R. N. Ganikhodzhaev
%T Volterra-type quadratic stochastic operators with a homogeneous tournament
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 783-794
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a9/
%G ru
%F CMFD_2021_67_4_a9
M. A. Tadzhieva; D. B. Eshmamatova; R. N. Ganikhodzhaev. Volterra-type quadratic stochastic operators with a homogeneous tournament. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 783-794. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a9/

[1] Ganikhodzhaev R. N., Issledovanie po teorii kvadratichnykh stokhasticheskikh operatorov, Diss. d.f.-m.n., IM AN RUz, Tashkent, 1993

[2] Ganikhodzhaev R. N., Abdurakhmanova R. E., “Opisanie kvadratichnykh avtomorfizmov konechno-mernogo simpleksa”, Uzb. mat. zh., 2002, no. 1, 7–16

[3] Ganikhodzhaev R. N., Zhuraboev A. M., “Mnozhestvo ravnovestnykh sostoyanii kvadratichnykh stokhasticheskikh operatorov tipa $V_\pi$”, Uzb. mat. zh., 1998, no. 3, 23–27

[4] Ganikhodzhaev R. N., Karimov A. Z., “O chisle vershin mnozhestva bistokhasticheskikh operatorov”, Uzb. mat. zh., 1999, no. 6, 29–35

[5] Ganikhodzhaev R. N., Saburov M. Kh., “Obobschennaya model nelineinykh operatorov volterrovskogo tipa i funktsii Lyapunova”, Zhurn. SFU. Ser. Mat. Fiz., 1:2 (2008), 188–196 | MR | Zbl

[6] Ganikhodzhaev R. N., Sarimsakov A. T., “Matematicheskaya model kaolitsii biologicheskikh sistem”, Dokl. AN UzSSR, 1992, no. 3, 14–17

[7] Ganikhodzhaev R. N., Tadzhieva M. A., Eshmamatova D. B., “Dinamicheskie svoistva kvadratichnykh gomeomorfizmov konechnomernogo simpleksa”, Itogi nauki i tekhn. Sovrem. mat. i ee prilozh., 144 (2018), 104–109 | MR

[8] Ganikhodzhaev R. N., Eshmamatova D. B., “Kvadratichnye avtomorfizmy simpleksa i asimptoticheskoe povedenie ikh traektorii”, Vladikavkaz. mat. zh., 8:2 (2006), 12–28 | MR | Zbl

[9] Ganikhodzhaev R. N., Eshniyazov A. I., “Bistokhasticheskie kvadratichnye operatory”, Uzb. mat. zh., 2004, no. 3, 29–34

[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984

[11] Khardi G. Kh., Littlvud D. I., Polia G., Neravenstva, Mir, M., 1948

[12] Ferchichi M. R., Yousfi A., “On some attractors of a two-dimensional quadratic map”, Int. J. Dyn. Syst. Differ. Equ., 9:1 (2019), 87–103 | MR | Zbl

[13] Ganikhodzhaev R. N., “Quadratic stochastic operators, Lyapunov function and tournaments”, Sb. Math., 76:2 (1993), 489–506 | DOI | MR

[14] Ganikhodzhaev R. N., “A chart of fixed points and Lyapunov functions for a class of discrete dynamical systems”, Math. Notes, 56:5-6 (1994), 1125–1131 | DOI | MR | Zbl

[15] Ganikhodzhaev R. N., Mukhamedov F. M., Rozikov U. A., “Quadratic stochastic operators: Results and open problems”, Infin. Dimens. Anal. Quantum. Probab. Relat., 14:2 (2011), 279–335 | DOI | MR | Zbl

[16] Galor O., Discrete dynamical systems, Springer, Berlin, 2007 | Zbl

[17] Gard T. C., Hallam T. G., “Persistence in food webs. I. Lotka—Volterra food chains”, Bull. Math. Biol., 41:6 (1979), 877–891 | MR | Zbl

[18] Harary F., Graph theory, Addison-Wesley, Reading, etc., 1969 | Zbl

[19] Hofbauer J., Sigmund K., The theory of evolution and dynamical systems: Mathematical aspects of selection, Cambridge Univ. Press, Cambridge, 1988 | Zbl

[20] Hofbauer J., Sigmund K., Evolutionary games and population dynamics, Cambridge Univ. Press, Cambridge, 1998 | Zbl

[21] Jamilov U. U., “The dynamics of Lotka—Volterra operators on $S^{2}$”, Abst. Conf. «New Results of Mathematics and Their Applications» (Samarkand, May 14-15, 2018), 108–110

[22] Jenks R. D., “Homogeneous multidimensional differential systems for mathematical models”, J. Differ. Equ., 4:4 (1968), 549–565 | DOI | MR | Zbl

[23] Moon J. W., Topics on tournaments, Holt, Rinehart and Winston, New York, etc., 1968 | Zbl