Separable algorithmic representations of classical systems and their applications
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 707-754

Voir la notice de l'article provenant de la source Math-Net.Ru

The main results of the theory of separable algorithmic representations of classical algebraic systems are presented. The most important classes of such systems and their representations in the lower classes of the arithmetic hierarchy — positive and negative — are described. Special attention is paid to the algorithmic, structural and topological properties of separable representations of groups, rings and bodies, as well as to effective analogs of the Maltsev theorem on embedding rings in bodies. The possibilities of using the studied concepts in the framework of theoretical informatics are considered.
@article{CMFD_2021_67_4_a6,
     author = {N. Kh. Kasymov and R. N. Dadazhanov and F. N. Ibragimov},
     title = {Separable algorithmic representations of classical systems and their applications},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {707--754},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a6/}
}
TY  - JOUR
AU  - N. Kh. Kasymov
AU  - R. N. Dadazhanov
AU  - F. N. Ibragimov
TI  - Separable algorithmic representations of classical systems and their applications
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 707
EP  - 754
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a6/
LA  - ru
ID  - CMFD_2021_67_4_a6
ER  - 
%0 Journal Article
%A N. Kh. Kasymov
%A R. N. Dadazhanov
%A F. N. Ibragimov
%T Separable algorithmic representations of classical systems and their applications
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 707-754
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a6/
%G ru
%F CMFD_2021_67_4_a6
N. Kh. Kasymov; R. N. Dadazhanov; F. N. Ibragimov. Separable algorithmic representations of classical systems and their applications. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 707-754. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a6/