Weierstrass polynomials in estimates of oscillatory integrals
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 668-692

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, estimates are obtained for the Fourier transform of smooth charges (measures) concentrated on some nonconvex hypersurfaces. The summability of the maximal Randall function is proved for a wide class of nonconvex hypersurfaces. In addition, in the three-dimensional case, estimates are obtained depending on the Varchenko height. The accuracy of the obtained estimates is proved. The proof of the estimate for oscillatory integrals is based on the Weierstrass preparatory theorem.
@article{CMFD_2021_67_4_a4,
     author = {I. A. Ikromov and A. S. Sadullaev},
     title = {Weierstrass polynomials in estimates of oscillatory integrals},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {668--692},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a4/}
}
TY  - JOUR
AU  - I. A. Ikromov
AU  - A. S. Sadullaev
TI  - Weierstrass polynomials in estimates of oscillatory integrals
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 668
EP  - 692
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a4/
LA  - ru
ID  - CMFD_2021_67_4_a4
ER  - 
%0 Journal Article
%A I. A. Ikromov
%A A. S. Sadullaev
%T Weierstrass polynomials in estimates of oscillatory integrals
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 668-692
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a4/
%G ru
%F CMFD_2021_67_4_a4
I. A. Ikromov; A. S. Sadullaev. Weierstrass polynomials in estimates of oscillatory integrals. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 668-692. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a4/