Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_4_a4, author = {I. A. Ikromov and A. S. Sadullaev}, title = {Weierstrass polynomials in estimates of oscillatory integrals}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {668--692}, publisher = {mathdoc}, volume = {67}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a4/} }
TY - JOUR AU - I. A. Ikromov AU - A. S. Sadullaev TI - Weierstrass polynomials in estimates of oscillatory integrals JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 668 EP - 692 VL - 67 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a4/ LA - ru ID - CMFD_2021_67_4_a4 ER -
I. A. Ikromov; A. S. Sadullaev. Weierstrass polynomials in estimates of oscillatory integrals. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 668-692. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a4/
[1] Arnold V. I., Varchenko A. N., Gusein-zade S. M., Osobennosti differntsiruemykh otobrazhenii, v. 1, Klassifikatsiya kriticheskikh tochek kaustik i volnovykh frontov, Nauka, M., 1982
[2] Arkhipov G. I., Karatsuba A. A., Chubarikov V. N., “Trigonometricheskie integraly”, Izv. AN SSSR, 43:5 (1979), 971–1003 | MR
[3] Varchenko A. N., “Mnogogranniki Nyutona i otsenki ostsilliruyuschikh integralov”, Funkts. analiz i ego prilozh., 10:3 (1976), 13–38 | MR
[4] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980
[5] Ikromov I. A., “Ob otsenkakh preobrazovaniya Fure indikatora nevypuklykh mnozhestv”, Dokl. RAN, 331:3 (1993), 272–274 | Zbl
[6] Ikromov I. A., “Ob otsenkakh preobrazovaniya Fure indikatora nevypuklykh oblastei”, Funkts. analiz i ego prilozh., 29:3 (1995), 16–24 | MR | Zbl
[7] Ikromov I. A., “Dempfirovannye ostsillyatornye integraly i maksimalnye operatory”, Mat. zametki, 78:6 (2005), 833–852 | Zbl
[8] Ikromov I. A., “Summiruemost ostsillyatornykh integralov po parametram i problema ob ogranichenii preobrazovaniya Fure na krivykh”, Mat. zametki, 87:5 (2010), 734–755 | MR | Zbl
[9] Karpushkin V. N., “Teorema o ravnomernoi otsenke ostsilliruyuschikh integralov s fazoi, zavisyaschei ot dvukh peremennykh”, Trudy sem. im. I. G. Petrovskogo, 10, 1984, 150–169 | Zbl
[10] Palamodov V. P., “Obobschennye funktsii i garmonicheskii analiz”, Sovrem. probl. mat. Fundam. napravl., 72, 1991, 5–134 | MR
[11] Popov D. A., “Otsenki s konstantami dlya nekotorykh klassov ostsilliruyuschikh integralov”, Usp. mat. nauk, 52:1 (1997), 77–148 | MR | Zbl
[12] Sadullaev A. S., “Kriterii algebraichnosti analiticheskikh mnozhestv”, Funkts. analiz i ego prilozh., 6:1 (1972), 85–86 | MR | Zbl
[13] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Mir, M., 1986
[14] Chakhkiev M., Otsenki ostsilliruyuschikh integralov s vypukloi fazoi i ikh prilozheniya, Avtoreferat diss. d.f.-m.n., MGU, M., 2006
[15] Bak J.-G., Oberlin D., Seeger A., Restriction of Fourier transform to curves: An endpoint estimate with affine arclength measure, 2012, arXiv: 1109.1300v2 [math.CA]
[16] Duistermaat J., “Oscillatory integrals, Lagrange immersions and unifoldings of singularities”, Commun. Pure Appl. Math., 27:2 (1974), 207–281 | DOI | Zbl
[17] Erdös L'., Salmhofer M., “Decay of the Fourier transform of surfaces with vanishing curvature”, Math. Z., 257:2 (2007), 261–294 | DOI | MR | Zbl
[18] Hironaka H., “Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II”, Ann. Math., 79 (1964), 109–326 | DOI
[19] Hua L.-K., “On the number of solutions of Tarry's problem”, Acta Sci. Sinica, 1:1 (1952), 1–76 | MR
[20] Ikromov I. A., Kempe M., Müller D., “Estimates for maximal functions associated with hypersurfaces in $\Bbb R^3$ and related problems of harmonic analysis”, Acta Math., 204:2 (2010), 151–271 | DOI | MR | Zbl
[21] Ikromov I. A., Müller D., “Uniform estimates for the Fourier transform of surface carried measures in $\Bbb R^3$ and an application to Fourier restriction”, J. Fourier Anal. Appl., 17:6 (2011), 1292–1332 | DOI | MR | Zbl
[22] Ikromov I. A., Müller D., Fourier restriction for hypersurfaces in three dimensions and Newton polyhedra, Princeton University Press, Princeton—Oxford, 2016 | Zbl
[23] Mokenhaupt G., Bounds in Lebesgue spaces of oscillatory integral operators, Habilitationsschrift, Universität Siegen, 1996
[24] Phong D. H., Stein E. M., Sturm J. A., “On the growth and stability of real-analytic functions”, Am. J. Math., 121:3 (1999), 519–554 | DOI | Zbl
[25] Randol B., “On the asymptotic behavior of the Fourier transform of the indicator function of a convex set”, Trans. AMS, 139 (1970), 278–285
[26] Sadullaev A., “On Weierstrass polynomials”, Ann. Pol. Mat., 123 (2019), 473–479 | Zbl
[27] Sadullaev A., Ikromov I. A., “Oscillatory integrals and Weierstrass polynomials”, Bull. Nat. Univ. Uzbekistan. Math. Nat. Sci., 2:2 (2019), 125–139
[28] Sogge C. D., Fourier integrals in classical analysis, Cambridge Univ. Press, Cambridge, 1993 | Zbl
[29] Sogge C. D., Stein E. M., “Averages of functions over hypersurfaces in $\mathbb{R}^n$”, Invent. Math., 82:3 (1985), 543–556 | DOI | MR | Zbl
[30] Stein E. M., Harmonic analysis: real-valued methods, orthogonality and oscillatory integrals, Princeton University Press, Princeton, 1993
[31] Svensson I., “Estimates for the Fourier transform of the characteristic function of a convex set”, Ark. Mat., 9:1 (1970), 11–22
[32] Van der Corput J. G., “Zur Methode der stationaren phase. I”, Composito Math., 1 (1934), 15–38