Generalized localization and summability almost everywhere of multiple Fourier series and integrals
Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 634-653.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that Luzin's conjecture has a positive solution for one-dimensional trigonometric Fourier series, but in the multidimensional case it has not yet found its confirmation for spherical partial sums of multiple Fourier series. Historically, progress in solving Luzin's hypothesis has been achieved by considering simpler problems. In this paper, we consider three of these problems for spherical partial sums: the principle of generalized localization, summability almost everywhere, and convergence almost everywhere of multiple Fourier series of smooth functions. A brief overview of the work in these areas is given and unsolved problems are mentioned and new problems are formulated. Moreover, at the end of the work, a new result on the convergence of spherical sums for functions from Sobolev classes is proved.
@article{CMFD_2021_67_4_a2,
     author = {R. R. Ashurov},
     title = {Generalized localization and summability almost everywhere of multiple {Fourier} series and integrals},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {634--653},
     publisher = {mathdoc},
     volume = {67},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a2/}
}
TY  - JOUR
AU  - R. R. Ashurov
TI  - Generalized localization and summability almost everywhere of multiple Fourier series and integrals
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 634
EP  - 653
VL  - 67
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a2/
LA  - ru
ID  - CMFD_2021_67_4_a2
ER  - 
%0 Journal Article
%A R. R. Ashurov
%T Generalized localization and summability almost everywhere of multiple Fourier series and integrals
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 634-653
%V 67
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a2/
%G ru
%F CMFD_2021_67_4_a2
R. R. Ashurov. Generalized localization and summability almost everywhere of multiple Fourier series and integrals. Contemporary Mathematics. Fundamental Directions, Science — Technology — Education — Mathematics — Medicine, Tome 67 (2021) no. 4, pp. 634-653. http://geodesic.mathdoc.fr/item/CMFD_2021_67_4_a2/

[1] Alimov Sh. A., Ashurov R. R., Pulatov A. K., “Kratnye ryady i integraly Fure”, Itogi nauki i tekhn. Sovrem. probl. mat., 42, 1989, 7–104 | Zbl

[2] Alimov Sh. A., Ilin V. A., Nikishin E. M., “Problemy skhodimosti kratnykh trigonometricheskikh ryadov i spektralnykh razlozhenii. I”, Usp. mat. nauk, 31 (1976), 29–86 | Zbl

[3] Ashurov R. R., “Ob usloviyakh lokalizatsii dlya spektralnykh razlozhenii ellipticheskikh operatorov s postoyannymi koeffitsientami”, Mat. zametki, 33 (1983), 434–439 | Zbl

[4] Ashurov R. R., “Summiruemost pochti vsyudu ryadov Fure funktsii iz $L_p$ po sobstvennym funktsiyam”, Mat. zametki, 34 (1983), 837–843 | Zbl

[5] Ashurov R. R., “Ob usloviyakh lokalizatsii dlya trigonometricheskikh ryadov Fure”, Dokl. AN SSSR, 31 (1985), 496–499 | Zbl

[6] Ashurov R. R., “Summiruemost kratnykh trigonometricheskikh ryadov Fure”, Mat. zametki, 49 (1991), 563–568 | Zbl

[7] Ashurov R. R., “O spektralnykh razlozheniyakh ellipticheskikh psevdodifferentsialnykh operatorov”, Uzb. mat. zh., 6 (1998), 20–29

[8] Ashurov R. R., “Obobschennaya lokalizatsiya dlya sharovykh chastichnykh summ kratnykh ryadov Fure”, Dokl. RAN, 489 (2019), 7–10 | Zbl

[9] Ashurov R. R., Buvaev K. T., “Summiruemost pochti vsyudu kratnykh integralov Fure”, Diff. uravn., 53 (2017), 750–760 | Zbl

[10] Ashurov R. R., Faiziev Yu. E., “Printsip obobschennoi lokalizatsii dlya nepreryvnykh vsplesk-razlozhenii”, Mat. zametki, 106 (2019), 75–81

[11] Babenko K. I., “O summiruemosti i skhodimosti razlozhenii po sobstvennym funktsiyam differentsialnogo operatora”, Mat. sb., 91 (1973), 147–201 | Zbl

[12] Bastis A. I., “Obobschennyi printsip lokalizatsii dlya N-kratnogo integrala Fure”, Dokl. AN SSSR, 278 (1984), 777–778 | MR

[13] Bastis A. I., “Obobschennaya lokalizatsiya dlya ryadov Fure po sobstvennym funktsiyam operatora Laplasa v klassakh $L_p$”, Litov. mat. sb., 31 (1991), 387–405 | MR

[14] Bloshanskii I. L., “O ravnomernoi skhodimosti trigonometricheskikh ryadov i integralov Fure”, Mat. zametki, 18 (1975), 675–684

[15] Ilin V. A., “Ob obobschennoi interpretatsii printsipa lokalizatsii dlya ryadov Fure po fundamentalnym sistemam funktsii”, Sib. mat. zh., 9:5 (1968), 1093–1106

[16] Ashurov R. R., “Generalized localization for spherical partial sums of multiple Fourier series”, J. Fourier Anal. Appl., 25:6 (2019), 3174–3183 | DOI | MR | Zbl

[17] Ashurov R. R., Ahmedov A., Mahmud Ahmad Rodzi B., “The generalized localization for multiple Fourier integrals”, J. Math. Anal. Appl., 371 (2010), 832–841 | DOI | MR | Zbl

[18] Ashurov R. R., Butaev A., “On generalized localization of fourier inversion for distributions”, Topics in functional analysis and algebra, USA—Uzbekistan Conf. on Anal. and Math. Phys. (California State Univ., Fullerton, USA, May 20–23, 2014), American Mathematical Society, Providence, 2016, 33–50 | DOI | Zbl

[19] Ashurov R. R., Butaev A., “On pointwise convergence of continuous wavelet transforms”, Uzb. Mat. Zh., 1 (2018), 2–24

[20] Ashurov R. R., Butaev A., Pradhan B., “On generalized localization of fourier inversion associated with an elliptic operator for distributions”, Abstr. Appl. Anal., 2012 (2012), 649848 | DOI | MR | Zbl

[21] Carbery A., Romera E., Soria F., “Radial weights and mixed norm inequalities for the disc multiplier”, J. Funct. Anal., 109 (1992), 52–75 | DOI | MR | Zbl

[22] Carbery A., Rubio de Francia J. L., Vega L., “Almost everywhere summability of Fourier integrals”, J. London Math. Soc. (2), 38 (1988), 513–524 | DOI | MR | Zbl

[23] Carbery A., Soria F., “Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an $L_2$-localization principle”, Rev. Mat. Iberoam., 4 (1988), 319–337 | DOI | Zbl

[24] Carbery A., Soria F., “Pointwise Fourier inversion and localization in $R^n$”, J. Fourier Anal. Appl., 3, Special Issue (1997), 847–858 | DOI | MR | Zbl

[25] Carleson L., “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl

[26] Fefferman C., “On the divergence of multiple Fourier series”, Bull. Am. Math. Soc., 77 (1971), 191–195 | DOI | Zbl

[27] Grafakos L., Classical Fourier analysis, Springer, New York, 2008 | Zbl

[28] Hunt R. A., “On convergence of Fourier series”, Proc. Conf. on Orthogonal Expansions and Their Continuous Analogues, Univ. Press, Edwardsville—Carbondale, 1968, 235–255 | Zbl

[29] Kenig C. E., Tomas P. A., “Maximal operators defined by Fourier multipliers”, Studia Math., 68 (1980), 79–83 | DOI | MR | Zbl

[30] Lee S., “Improved bounds for Bochner—Riesz and maximal Bochner—Riesz operators”, Duke Math. J., 122 (2004), 205–232 | DOI | MR | Zbl

[31] Lu Sh., “Conjectures and problems in Bochner—Riesz means”, Front. Math. China, 8 (2013), 1237–1251 | DOI | MR | Zbl

[32] Mitchell J., “On the summability of multiple orthogonal series”, Trans. Am. Math. Soc., 71 (1951), 136–151 | DOI | MR | Zbl

[33] Randol B., “On the asymptotic behavior of the Fourier transform of the indicator function of the convex set”, Trans. Am. Math. Soc., 139 (1969), 279–285 | DOI | Zbl

[34] Sjölin P., “Convergence almost everywhere of certain singular integrals and multiple Fourier series”, Ark. Mat., 9 (1971), 65–90 | DOI | MR | Zbl

[35] Sjölin P., “Regularity and integrability of spherical means”, Monatsh. Math., 96 (1983), 277–291 | DOI | MR | Zbl

[36] Stein E. M., “Localization and summability of multiple Fourier series”, Acta Math., 1–2 (1958), 93–147 | DOI

[37] Stein E. M., “On limits of sequences of operators”, Ann. Math., 74 (1961), 140–170 | DOI | MR | Zbl

[38] Stein E. M., “Some problems in harmonic analysis”, Harmonic analysis in Euclidean spaces, v. 1, Am. Math. Soc., Providence, 1978, 3–20

[39] Stein E. M., Weiss G., Itroduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, 1971

[40] Tao T., “The weak-type endpoint Bochner—Riesz conjecture and related topics”, Indiana Univ. Math. J., 47 (1998), 1097–1124 | DOI | MR | Zbl

[41] Tao T., “On the maximal Bochner—Riesz conjecture in the plane for $p2$”, Trans. Am. Math. Soc., 354 (2002), 1947–1959 | DOI | Zbl