Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_3_a7, author = {S. Gala and M. A. Ragusa}, title = {An improved blow-up criterion for the magnetohydrodynamics with the {Hall} and ion-slip effects}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {526--534}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a7/} }
TY - JOUR AU - S. Gala AU - M. A. Ragusa TI - An improved blow-up criterion for the magnetohydrodynamics with the Hall and ion-slip effects JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 526 EP - 534 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a7/ LA - ru ID - CMFD_2021_67_3_a7 ER -
%0 Journal Article %A S. Gala %A M. A. Ragusa %T An improved blow-up criterion for the magnetohydrodynamics with the Hall and ion-slip effects %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 526-534 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a7/ %G ru %F CMFD_2021_67_3_a7
S. Gala; M. A. Ragusa. An improved blow-up criterion for the magnetohydrodynamics with the Hall and ion-slip effects. Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 526-534. http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a7/
[1] Beale J., Kato T., Majda A., “Remarks on breakdown of smooth solutions for the three-dimensional Euler equations”, Commun. Math. Phys., 94 (1984), 61–66 | DOI | Zbl
[2] Chemin J.-Y., Perfect incompressible fluids, Clarendon Press Oxford University Press, New York, 1998 | Zbl
[3] Fan J., Jia X., Nakamura G., Zhou Y., “On well-posedness and blowup criteria for the magnetohydrodynamics with the Hall and ion-slip effects”, Z. Angew. Math. Phys., 66 (2015), 1695–1706 | DOI | Zbl
[4] Gala S., Ragusa M. A., “On the blow-up criterion of strong solutions for the MHD equations with the Hall and ion-slip effects in $\mathbb{R}^{3}$”, Z. Angew. Math. Phys., 67 (2016), 18 | DOI
[5] Kozono H., Taniuchi Y., “Bilinear estimates in $BMO$ and the Navier—Stokes equations”, Math. Z., 235 (2000), 173–194 | DOI | Zbl
[6] Maiellaro M., “Uniqueness of MHD thermodiffusive mixture flows with Hall and ion-slip effects”, Meccanica, 12 (1977), 9–14 | DOI | Zbl
[7] Mulone G., Salemi F., “Some continuous dependence theorems in MHD with Hall and ion-slip currents in unbounded domains”, Rend. Accad. Sci. Fis. Mat. Napoli., 55 (1988), 139–152 | Zbl
[8] Mulone G., Solonnikov V. A., “On an initial boundary-value problem for the equation of magnetohydrodynamics with the Hall and ion-slip effects”, J. Math. Sci. (N.Y.), 87 (1997), 3381–3392 | DOI
[9] Triebel H., Theory of function spaces, Birkhäuser, Basel, 1983 | Zbl
[10] Zhou Y., “Regularity criteria for the 3D MHD equations in terms of the pressure”, Int. J. Nonlinear Mech., 41 (2006), 1174–1180 | DOI | Zbl