On Holder's inequality in Lebesgue spaces with variable order of summability
Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 472-482.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce a new version of the definition of a quasi-norm (in particular, a norm) in Lebesgue spaces with variable order of summability. Using it, we prove an analogue of Hölder's inequality for such spaces, which is more general and more precise than those known earlier.
@article{CMFD_2021_67_3_a4,
     author = {V. I. Burenkov and T. V. Tararykova},
     title = {On {Holder's} inequality in {Lebesgue} spaces with variable order of summability},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {472--482},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a4/}
}
TY  - JOUR
AU  - V. I. Burenkov
AU  - T. V. Tararykova
TI  - On Holder's inequality in Lebesgue spaces with variable order of summability
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 472
EP  - 482
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a4/
LA  - ru
ID  - CMFD_2021_67_3_a4
ER  - 
%0 Journal Article
%A V. I. Burenkov
%A T. V. Tararykova
%T On Holder's inequality in Lebesgue spaces with variable order of summability
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 472-482
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a4/
%G ru
%F CMFD_2021_67_3_a4
V. I. Burenkov; T. V. Tararykova. On Holder's inequality in Lebesgue spaces with variable order of summability. Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 472-482. http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a4/

[1] Bandaliev R. A., “O strukturnykh svoistvakh vesovogo prostranstva $L_{p(x),\omega}$ dlya $0

(x)1$”, Mat. zametki, 95:4 (2014), 492–506 | Zbl

[2] Zhikov V. V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. Mat., 50:4 (1986), 675–710

[3] Rabinovich V. S., Samko S. G., “Singulyarnye integralnye operatory v vesovykh prostranstvakh Lebega s peremennymi pokazatelyami na slozhnykh karlesonovskikh krivykh”, Funkts. analiz i ego prilozh., 46:1 (2012), 87–92 | Zbl

[4] Samko S. G., Umarkhadzhiev S. M., “O regulyarizatsii odnogo mnogomernogo integralnogo uravneniya v prostranstvakh Lebega s peremennym pokazatelem”, Mat. zametki, 93:1 (2013), 575–585 | Zbl

[5] Sharapudinov I. I., “O topologii prostranstva $L^{p(t)}([0,1])$”, Mat. zametki, 26:4 (1979), 613–632 | Zbl

[6] Bandaliev R. A., “On Hardy-type inequalities in weighted variable exponent spaces $L_{p(x),\omega}$ for $0

(x)1$”, Eurasian Math. J., 4:4 (2013), 5–16 | Zbl

[7] Bandaliev R. A., Hasanov S. G., “On denseness of $C^\infty_0(\Omega)$ and compactness in $L_{p(x)}(\Omega)$ for $0

(x)1$”, Moscow Math. J., 18:1 (2018), 1–13 | DOI | Zbl

[8] Bendaoud S. A., Senouci A., “Inequalities for weighted Hardy operators in weighted variable exponent Lebesgue space with $0

(x)1$”, Eurasian Math. J., 9:1 (2018), 30–39 | Zbl

[9] Cruz-Uribe D., Fiorenza A., Variable Lebesgue spaces. Foundations and harmonic analysis, Birkhäuser, Basel, 2013 | Zbl

[10] Cruz-Uribe D., Fiorenza A., Neugebauer C., “The maximal function on variable $L_p$ spaces”, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238 | Zbl

[11] Diening L., “Maximal function on generalized Lebesgue spaces $L_{p(.)}$”, Math. Inequal. Appl., 7:2 (2004), 245–254

[12] Diening L., Harjulehto P., Hasto P., Ruzhichka M., Lebesgue and Sobolev spaces with variable exponents, Springer, Berlin, 2011 | Zbl

[13] Kovachik O., Rakosnik J., “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618 | DOI

[14] Nekvinda A., “Hardy—Littlewood maximal operator on $L^{p(x)}(M_n)$”, Math. Inequal. Appl., 1:2 (2004), 255–266

[15] Ruzhichka M., Electrorheological fluids: modeling and mathematical theory, Springer, Berlin, 2000

[16] Samko S., “Convolution type operators in $L_{p(x)}$”, Integral Transforms Spec. Funct., 7:1-2 (1998), 123–144 | DOI | Zbl

[17] Senouci A., Zanou A., “Some integral inequalities for quasimonotone functions in weighted variable exponent Lebesgue space with $0

(x)1$”, Eurasian Math. J., 11:4 (2020), 58–65 | DOI | Zbl