Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_3_a11, author = {A. L. Skubachevskii and N. O. Ivanov}, title = {On generalized solutions of the second boundary-value problem for differential-difference equations with variable coefficients}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {576--595}, publisher = {mathdoc}, volume = {67}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a11/} }
TY - JOUR AU - A. L. Skubachevskii AU - N. O. Ivanov TI - On generalized solutions of the second boundary-value problem for differential-difference equations with variable coefficients JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 576 EP - 595 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a11/ LA - ru ID - CMFD_2021_67_3_a11 ER -
%0 Journal Article %A A. L. Skubachevskii %A N. O. Ivanov %T On generalized solutions of the second boundary-value problem for differential-difference equations with variable coefficients %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 576-595 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a11/ %G ru %F CMFD_2021_67_3_a11
A. L. Skubachevskii; N. O. Ivanov. On generalized solutions of the second boundary-value problem for differential-difference equations with variable coefficients. Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 576-595. http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a11/
[1] Danford N., Shvarts Dzh., Lineinye operatory. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, Mir, M., 1966
[2] Kamenskii A. G., “Kraevye zadachi dlya uravnenii s formalno simmetrichnymi differentsialno-raznostnymi operatorami”, Diff. uravn., 12 (1976), 815–824 | Zbl
[3] Kamenskii G. A., Myshkis A. D., “Postanovka kraevykh zadach dlya differentsialnykh uravnenii s otklonyayuschimisya argumentami v starshikh chlenakh”, Diff. uravn., 10 (1974), 409–418 | Zbl
[4] Kamenskii G. A., Myshkis A. D., Skubachevskii A. L., “O gladkikh resheniyakh kraevoi zadachi dlya differentsialno-raznostnogo uravneniya neitralnogo tipa”, Ukr. mat. zh., 37:5 (1985), 581–585
[5] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972
[6] Krasovskii N. N., Teoriya upravleniya dvizheniem. Lineinye sistemy, Nauka, M., 1968
[7] Krein S. G., Lineinye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1971
[8] Kryazhimskii A. V., Maksimov V. I., Osipov Yu. S., “O pozitsionnom modelirovanii v dinamicheskikh sistemakh”, Prikl. mat. mekh., 47:6 (1983), 883–890
[9] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971
[10] Neverova D. A., Skubachevskii A. L., “O klassicheskikh i obobschennykh resheniyakh kraevykh zadach dlya differentsialno-raznostnykh uravnenii s peremennymi koeffitsientami”, Mat. zametki, 94:5 (2013), 702–719 | Zbl
[11] Osipov Yu. S., “O stabilizatsii upravlyaemykh sistem s zapazdyvaniem”, Diff. uravn., 1:5 (1965), 605–618 | Zbl
[12] Skubachevskii A. L., “K zadache ob uspokoenii sistemy upravleniya s posledeistviem”, Dokl. RAN, 335:2 (1994), 157–160 | Zbl
[13] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971
[14] Neverova D. A., “Generalized and classical solutions to the second and third boundary-value problem for differential-difference equations”, Functional Differential Equations, 21 (2014), 47–65 | Zbl
[15] Skubachevskii A. L., Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel—Boston—Berlin, 1997 | Zbl