On the solvability of the generalized Neumann problem for a higher-order elliptic equation in an infinite domain
Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 564-575

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generalized Neumann problem for a $2l$th-order elliptic equation with constant real higher-order coefficients in an infinite domain containing the exterior of some circle and bounded by a sufficiently smooth contour. It consists in specifying of the $(k_j-1)$th-order normal derivatives where $1 \le k_1 \ldots $ for $k_j = j$ it turns into the Dirichlet problem, and for $k_j = j + 1$ into the Neumann problem. Under certain assumptions about the coefficients of the equation at infinity, a necessary and sufficient condition for the Fredholm property of this problem is obtained and a formula for its index in Hölder spaces is given.
@article{CMFD_2021_67_3_a10,
     author = {B. D. Koshanov and A. P. Soldatov},
     title = {On the solvability of the generalized {Neumann} problem for a higher-order elliptic equation in an infinite domain},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {564--575},
     publisher = {mathdoc},
     volume = {67},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a10/}
}
TY  - JOUR
AU  - B. D. Koshanov
AU  - A. P. Soldatov
TI  - On the solvability of the generalized Neumann problem for a higher-order elliptic equation in an infinite domain
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 564
EP  - 575
VL  - 67
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a10/
LA  - ru
ID  - CMFD_2021_67_3_a10
ER  - 
%0 Journal Article
%A B. D. Koshanov
%A A. P. Soldatov
%T On the solvability of the generalized Neumann problem for a higher-order elliptic equation in an infinite domain
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 564-575
%V 67
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a10/
%G ru
%F CMFD_2021_67_3_a10
B. D. Koshanov; A. P. Soldatov. On the solvability of the generalized Neumann problem for a higher-order elliptic equation in an infinite domain. Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 564-575. http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a10/