On the solvability of the generalized Neumann problem for a higher-order elliptic equation in an infinite domain
Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 564-575
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the generalized Neumann problem for a $2l$th-order elliptic equation with constant real higher-order coefficients in an infinite domain containing the exterior of some circle and bounded by a sufficiently smooth contour. It consists in specifying of the $(k_j-1)$th-order normal derivatives where $1 \le k_1 \ldots $ for $k_j = j$ it turns into the Dirichlet problem, and for $k_j = j + 1$ into the Neumann problem. Under certain assumptions about the coefficients of the equation at infinity, a necessary and sufficient condition for the Fredholm property of this problem is obtained and a formula for its index in Hölder spaces is given.
@article{CMFD_2021_67_3_a10,
author = {B. D. Koshanov and A. P. Soldatov},
title = {On the solvability of the generalized {Neumann} problem for a higher-order elliptic equation in an infinite domain},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {564--575},
publisher = {mathdoc},
volume = {67},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a10/}
}
TY - JOUR AU - B. D. Koshanov AU - A. P. Soldatov TI - On the solvability of the generalized Neumann problem for a higher-order elliptic equation in an infinite domain JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 564 EP - 575 VL - 67 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a10/ LA - ru ID - CMFD_2021_67_3_a10 ER -
%0 Journal Article %A B. D. Koshanov %A A. P. Soldatov %T On the solvability of the generalized Neumann problem for a higher-order elliptic equation in an infinite domain %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 564-575 %V 67 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a10/ %G ru %F CMFD_2021_67_3_a10
B. D. Koshanov; A. P. Soldatov. On the solvability of the generalized Neumann problem for a higher-order elliptic equation in an infinite domain. Contemporary Mathematics. Fundamental Directions, Dedicated to 70th anniversary of the President of the RUDN University V. M. Filippov, Tome 67 (2021) no. 3, pp. 564-575. http://geodesic.mathdoc.fr/item/CMFD_2021_67_3_a10/