Asymptotics of the spectrum of variational problems arising in the theory of fluid oscillations
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 363-407.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is a survey of results on the asymptotics of the spectrum of variational problems arising in the theory of small oscillations of a fluid in a vessel near the equilibrium position. The problems were posed by N. D. Kopachevsky in the late 1970s and cover various fluid models. The formulations of problems are given both in the form of boundary-value problems for eigenvalues in the domain $\Omega\subset{\mathbb R}^3,$ which is occupied by the fluid in the equilibrium state, and in the form of variational problems on the spectrum of the ratio of quadratic forms. The common features of all the problems under consideration are the presence of an “elliptic” constraint (the Laplace equation for an ideal fluid or a homogeneous Stokes system for a viscous fluid), as well as the occurrence of the spectral parameter in the boundary condition on the free (equilibrium) surface $\Gamma$. The spectrum in the considered problems is discrete; the spectrum distribution functions have power-law asymptotics.
@article{CMFD_2021_67_2_a9,
     author = {T. A. Suslina},
     title = {Asymptotics of the spectrum of variational problems arising in the theory of fluid oscillations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {363--407},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a9/}
}
TY  - JOUR
AU  - T. A. Suslina
TI  - Asymptotics of the spectrum of variational problems arising in the theory of fluid oscillations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 363
EP  - 407
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a9/
LA  - ru
ID  - CMFD_2021_67_2_a9
ER  - 
%0 Journal Article
%A T. A. Suslina
%T Asymptotics of the spectrum of variational problems arising in the theory of fluid oscillations
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 363-407
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a9/
%G ru
%F CMFD_2021_67_2_a9
T. A. Suslina. Asymptotics of the spectrum of variational problems arising in the theory of fluid oscillations. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 363-407. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a9/

[1] Agranovich M. S., “Smeshannye zadachi v lipshitsevoi oblasti dlya silno ellipticheskikh sistem 2-go poryadka”, Funkts. analiz i ego prilozh., 45:2 (2011), 1–22 | Zbl

[2] Agranovich M. S., Sobolevskie prostranstva, ikh obobscheniya i ellipticheskie zadachi v oblastyakh s gladkoi i lipshitsevoi granitsei, MTsNMO, M., 2013

[3] Babskii V. G., Kopachevskii N. D., Myshkis A. D., Slobozhanin L. A., Tyuptsov A. D., Gidromekhanika nevesomosti, Nauka, M., 1976

[4] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Naukova dumka, Kiev, 1965

[5] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975

[6] Birman M. Sh., Solomyak M. Z., “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov. I”, Tr. Mosk. mat. ob-va, 27, 1972, 3–52 | Zbl

[7] Birman M. Sh., Solomyak M. Z., “Kolichestvennyi analiz v teoremakh vlozheniya Soboleva i prilozheniya k spektralnoi teorii”, Desyataya mat. shkola (Kiev, 1974), 5–189

[8] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami. I”, Vestn. Leningr. un-ta, 1977, no. 13, 13–21 | Zbl

[9] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra differentsialnykh uravnenii”, Itogi nauki i tekhn. Mat. analiz, 14, 1977, 5–58 | Zbl

[10] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami. II”, Vestn. Leningr. un-ta, 1979, no. 13, 5–10 | Zbl

[11] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra variatsionnykh zadach na resheniyakh ellipticheskikh uravnenii”, Sib. mat. zh., 20:1 (1979), 3–22 | Zbl

[12] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra variatsionnykh zadach na resheniyakh ellipticheskikh sistem”, Zap. nauch. sem. LOMI, 115, 1982, 23–39 | Zbl

[13] Birman M. Sh., Solomyak M. Z., “Kompaktnye operatory so stepennoi asimptotikoi singulyarnykh chisel”, Zap. nauch. sem. LOMI, 126, 1983, 21–30 | Zbl

[14] Vulis I. L., Solomyak M. Z., “Spektralnaya asimptotika vyrozhdayuscheisya zadachi Steklova”, Vestn. Leningr. un-ta, 1973, no. 19, 262–265

[15] Karazeeva N. A., Solomyak M. Z., “Asimptotika spektra kontaktnoi zadachi dlya ellipticheskikh uravnenii vtorogo poryadka”, Probl. mat. analiza, 1981, no. 8, 36–48 | Zbl

[16] Kozhevnikov A. N., “Ob asimptotike sobstvennykh znachenii i polnote kornevykh vektorov operatora, porozhdennogo kraevoi zadachei s parametrom v kraevom uslovii”, Dokl. AN SSSR, 200:6 (1971), 1273–1276 | Zbl

[17] Kozhevnikov A. N., “Spektralnye zadachi dlya psevdodifferentsialnykh sistem, ellipticheskikh po Duglisu—Nirenbergu”, Mat. sb., 92:1 (1973), 60–88 | Zbl

[18] Kopachevskii N. D., “Normalnye kolebaniya sistemy tyazhelykh vyazkikh vraschayuschikhsya zhidkostei”, Dokl. AN USSR. Ser. A, 1978, no. 7, 586–590

[19] Kopachevskii N. D., Malye dvizheniya i normalnye kolebaniya sistemy tyazhelykh vyazkikh vraschayuschikhsya zhidkostei, Preprint 33-77, FTINT AN USSR, Kharkov, 1978

[20] Kopachevskii N. D., Teoriya malykh kolebanii zhidkostei s uchetom sil poverkhnostnogo natyazheniya i vrascheniya, Diss. doktora fiz.-mat. nauk, FTINT AN USSR, Kharkov, 1979

[21] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike, Nauka, M., 1989

[22] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971

[23] Lukyanov V. V., Nazarov A. I., “Reshenie zadachi Venttselya dlya uravneniya Laplasa i Gelmgoltsa s pomoschyu povtornykh potentsialov”, Zap. nauch. sem. LOMI, 250, 1998, 203–218 | Zbl

[24] Mikhlin S. G., Problema minimuma kvadratichnogo funktsionala, Gostekhizdat, M., 1952

[25] Rozenblyum G. V., “Asimptotika sobstvennykh znachenii nekotorykh dvumernykh spektralnykh zadach”, Probl. mat. analiza, 7 (1979), 188–203 | Zbl

[26] Rozenblyum G. V., Chastnoe soobschenie, 2021

[27] Solonnikov V. A., Uraltseva N. N., “Prostranstva Soboleva”, Izbrannye glavy analiza i vysshei algebry, Izd-vo Leningr. un-ta, L., 1981

[28] Suslina T. A., “Asimptotika spektra variatsionnykh zadach na resheniyakh odnorodnogo ellipticheskogo uravneniya pri nalichii svyazei na chasti granitsy”, Probl. mat. analiza, 1984, no. 9, 84–97

[29] Suslina T. A., Asimptotika spektra nekotorykh zadach, svyazannykh s kolebaniyami zhidkostei, Dep. v VINITI, No 8058-B, 1985 | Zbl

[30] Suslina T. A., “Asimptotika spektra variatsionnykh zadach na resheniyakh ellipticheskogo uravneniya v oblasti s kusochno-gladkoi granitsei”, Zap. nauch. sem. LOMI, 147, 1985, 179–183 | Zbl

[31] Suslina T. A., “Ob asimptotike spektra nekotorykh zadach, svyazannykh s kolebaniyami zhidkostei”, Zap. nauch. sem. LOMI, 152, 1986, 158–164 | Zbl

[32] Suslina T. A., “Asimptotika spektra dvukh modelnykh zadach teorii kolebanii zhidkostei”, Tr. SPb. Mat. ob-va, 4 (1996), 287–322 | Zbl

[33] Temam R., Uravneniya Nave—Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981

[34] Trev F., Vvedenie v teoriyu psevdodifferentsialnykh operatorov i integralnykh operatorov Fure, v. 1, 2, Mir, M., 1984

[35] Boutet de Monvel L., “Boundary problems for pseudodifferential operators”, Acta Math., 126 (1971), 11–51 | DOI | Zbl

[36] Galkowski J., Toth J. A., “Poinwise bounds for Steklov eigenfunctions”, J. Geom. Anal., 29 (2019), 142–193 | DOI | Zbl

[37] Girouard A., Polterovich I., “Spectral geometry of the Steklov problem”, J. Spectr. Theory, 7:2 (2017), 321–359 | DOI | Zbl

[38] Grubb G., Functional calculus of pseudodifferential boundary problems, Birkhäuser, Boston, 1996 | Zbl

[39] Grubb G., Geymonat G., “The essential spectrum of elliptic systems of mixed order”, Math. Ann., 227 (1977), 247–276 | DOI | Zbl

[40] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 1, Self-adjoint problems for an ideal fluid, Birkhäuser, Basel—Boston—Berlin, 2001 | Zbl

[41] Kopachevsky N. D., Krein S. G., Operator approach to linear problems of hydrodynamics, v. 2, Non-self-adjoint problems for viscous fluids, Birkhäuser, Basel—Boston—Berlin, 2003 | Zbl

[42] Maz'ya V. G., Plamenevskii B. A., “The first boundary value problem for the classical equations of mathematical physics. I”, Z. Anal. Anwend., 2:1 (1983), 335–359 | DOI | Zbl

[43] Metivier G., “Valeurs propres d'operateurs definis par la restriction de systemes variationnels a des sous-espaces”, J. Math. Pures Appl., 57:2 (1978), 133–156 | Zbl

[44] Sandgren L., “A vibration problem”, Medd. Lunds Univ. Mat. Semin., 13 (1955) | Zbl

[45] Suslina T. A., “Spectral asymptotics of variational problems with elliptic constraints in domains with piecewise smooth boundary”, Russ. J. Math. Phys., 6:2 (1999), 214–234 | Zbl

[46] Zhu J., “Geometry and interior nodal sets of Steklov eigenfunctions”, Calc. Var. Part. Differ. Equ., 59:5 (2020), 150 | DOI | Zbl