On solvability of a linear parabolic problem with nonlocal boundary conditions
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 349-362
Voir la notice de l'article provenant de la source Math-Net.Ru
A linear parabolic equation with boundary conditions of the Bitsadze–Samarskii type is considered. An existence and uniqueness theorem for a generalized solution is proved, and estimates are obtained.
@article{CMFD_2021_67_2_a8,
author = {O. V. Solonukha},
title = {On solvability of a linear parabolic problem with nonlocal boundary conditions},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {349--362},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/}
}
TY - JOUR AU - O. V. Solonukha TI - On solvability of a linear parabolic problem with nonlocal boundary conditions JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 349 EP - 362 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/ LA - ru ID - CMFD_2021_67_2_a8 ER -
O. V. Solonukha. On solvability of a linear parabolic problem with nonlocal boundary conditions. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 349-362. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/