On solvability of a linear parabolic problem with nonlocal boundary conditions
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 349-362.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear parabolic equation with boundary conditions of the Bitsadze–Samarskii type is considered. An existence and uniqueness theorem for a generalized solution is proved, and estimates are obtained.
@article{CMFD_2021_67_2_a8,
     author = {O. V. Solonukha},
     title = {On solvability of a linear parabolic problem with nonlocal boundary conditions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {349--362},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - On solvability of a linear parabolic problem with nonlocal boundary conditions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 349
EP  - 362
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/
LA  - ru
ID  - CMFD_2021_67_2_a8
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T On solvability of a linear parabolic problem with nonlocal boundary conditions
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 349-362
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/
%G ru
%F CMFD_2021_67_2_a8
O. V. Solonukha. On solvability of a linear parabolic problem with nonlocal boundary conditions. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 349-362. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/

[1] Bitsadze A. V., Samarskii A. A., “O nekotorykh prosteishikh obobscheniyakh lineinykh ellipticheskikh zadach”, Dokl. AN SSSR, 185:4 (1969), 739–740 | Zbl

[2] Vishik M. I., “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. Mosk. mat. ob-va, 1, 1952, 187–264

[3] Vlasov V. V., Rautian N. A., Spektralnyi analiz funktsionalno-differentsialnykh uravnenii, MAKS Press, M., 2016

[4] Liiko V. V., Skubachevskii A. L., “Smeshannye zadachi dlya silno ellipticheskikh differentsialno-raznostnykh uravnenii v tsilindre”, Mat. zametki, 107:5 (2020), 693–716 | Zbl

[5] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[6] Samarskii A. A., “O nekotorykh problemakh teorii differentsialnykh uravnenii”, Diff. uravn., 16:1 (1980), 1925–1935

[7] Skubachevskii A. L., “Ellipticheskie zadachi s nelokalnymi usloviyami vblizi granitsy”, Mat. sb., 129:2 (1986), 279–302

[8] Skubachevskii A. L., “Neklassicheskie kraevye zadachi. I”, Sovrem. mat. Fundam. napravl., 26, 2007, 3–132

[9] Skubachevskii A. L., “Neklassicheskie kraevye zadachi. II”, Sovrem. mat. Fundam. napravl., 33, 2009, 3–179

[10] Skubachevskii A. L., “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, Usp. mat. nauk, 71:5 (2016), 3–112 | Zbl

[11] Skubachevskii A. L., Selitskii A. M., “Vtoraya kraevaya zadacha dlya parabolicheskogo differentsialno-raznostnogo uravneniya”, Usp. mat. nauk, 62:1 (2007), 207–208 | Zbl

[12] Carleman T., “Sur la théorie des équations intégrales et ses applications”, Verh. Internat. Math.-Kongr., 1 (1932), 138–151

[13] Browder F. E., “Nonlocal elliptic boundary value problems”, Am. J. Math., 86:4 (1964), 735–750 | DOI | Zbl

[14] Liiko V. V., Skubachevskii A. L., “On a certain property of a regular difference operator with variable coefficients”, Complex Var. Elliptic Equ., 64:5 (2019), 852–865 | DOI | Zbl

[15] Muravnik A. B., “Functional differential parabolic equations: integral transformationsand qualitative properties of solutions of the Cauchy problem”, J. Math. Sci. (N.Y.), 216:3 (2016), 345–496 | DOI | Zbl

[16] Skubachevskii A. L., Elliptic functional differential equations and applications, Birkhäuser, Basel—Boston—Berlin, 1997 | Zbl