On solvability of a linear parabolic problem with nonlocal boundary conditions
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 349-362

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear parabolic equation with boundary conditions of the Bitsadze–Samarskii type is considered. An existence and uniqueness theorem for a generalized solution is proved, and estimates are obtained.
@article{CMFD_2021_67_2_a8,
     author = {O. V. Solonukha},
     title = {On solvability of a linear parabolic problem with nonlocal boundary conditions},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {349--362},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - On solvability of a linear parabolic problem with nonlocal boundary conditions
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 349
EP  - 362
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/
LA  - ru
ID  - CMFD_2021_67_2_a8
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T On solvability of a linear parabolic problem with nonlocal boundary conditions
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 349-362
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/
%G ru
%F CMFD_2021_67_2_a8
O. V. Solonukha. On solvability of a linear parabolic problem with nonlocal boundary conditions. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 349-362. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a8/