Equations related to stochastic processes: semigroup approach and Fourier transform
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 324-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to integro-differential equations related to stochastic processes. We study the relationship between differential equations with random perturbations — stochastic differential equations (SDEs) — and deterministic equations for the probabilistic characteristics of processes determined by random perturbations. The resulting deterministic pseudodifferential equations are investigated by semigroup methods and Fourier transform methods.
@article{CMFD_2021_67_2_a7,
     author = {I. V. Melnikova and U. A. Alekseeva and V. A. Bovkun},
     title = {Equations related to stochastic processes: semigroup approach and {Fourier} transform},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {324--348},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a7/}
}
TY  - JOUR
AU  - I. V. Melnikova
AU  - U. A. Alekseeva
AU  - V. A. Bovkun
TI  - Equations related to stochastic processes: semigroup approach and Fourier transform
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 324
EP  - 348
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a7/
LA  - ru
ID  - CMFD_2021_67_2_a7
ER  - 
%0 Journal Article
%A I. V. Melnikova
%A U. A. Alekseeva
%A V. A. Bovkun
%T Equations related to stochastic processes: semigroup approach and Fourier transform
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 324-348
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a7/
%G ru
%F CMFD_2021_67_2_a7
I. V. Melnikova; U. A. Alekseeva; V. A. Bovkun. Equations related to stochastic processes: semigroup approach and Fourier transform. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 324-348. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a7/

[1] Anufrieva U. A., Melnikova I. V., “Osobennosti i regulyarizatsiya nekorrektnykh zadach Koshi s differentsialnymi operatorami”, Sovrem. mat. Fundam. napravl., 14, 2005, 3–156 | Zbl

[2] Balakrishnan A. V., Prikladnoi funktsionalnyi analiz, Nauka, M., 1980

[3] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2005

[4] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975

[5] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Vyp. 2. Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958

[6] Gelfand I. M., Shilov G. E., Obobschennye funktsii. Vyp. 3. Nekotorye voprosy teorii differentsialnykh uravnenii, Fizmatgiz, M., 1958

[7] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. II, Nauka, M., 1973

[8] Ito K., Veroyatnostnye protsessy, v. II, Inostrannaya literatura, M., 1963

[9] Kolmogorov A. N., “Ob analiticheskikh metodakh v teorii veroyatnostei”, Usp. mat. nauk, 1938, no. 5, 5–41

[10] Melnikova I. V., Alekseeva U. A., “Polugruppovaya klassifikatsiya i klassifikatsiya Gelfanda—Shilova dlya sistem differentsialnykh uravnenii v chastnykh proizvodnykh”, Mat. zametki, 104:6 (2018), 895–911 | Zbl

[11] Melnikova I. V., Bovkun V. A., Alekseeva U. A., “Integrodifferentsialnye uravneniya, porozhdennye stokhasticheskimi zadachami”, Diff. uravn., 57:3 (2021), 1653–1663

[12] Prokhorov Yu. V., Rozanov Yu. A., Teoriya veroyatnostei. Osnovnye ponyatiya. Predelnye teoremy. Sluchainye protsessy, Nauka, M., 1987

[13] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[14] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1, Teoriya raspredeleniya i analiz Fure, Mir, M., 1986

[15] Khermander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Psevdodifferentsialnye operatory, Mir, M., 1987

[16] Applebaum D., Lévy processes and stochastic calculus, Cambridge University Press, Cambridge, 2009

[17] Arendt W., Batty C. J. K., Hieber M., Neubrander F., Vector-Valued Laplace Transform and Cauchy Problems, Birkhäuser, Basel, 2011

[18] Björk T., Arbitrage theory in continuous time, Oxford Univ. Press, Oxford, 2009

[19] Böttcher B., Schilling R., Wang J., Lévy matters, v. III, Lévy-type processes: construction, approximation and sample path properties, Springer, Heidelberg—New York, 2013

[20] Boyarchenko S. I., Levendorskii S. Z., Non-Gaussian Merton—Black—Scholes theory, World Scientific, Singapore, 2002 | Zbl

[21] Chazarain J., “Problemes de Cauchy abstraits et applications a quelques problemes mixtes”, J. Funct. Anal., 7:3 (1971), 386–446 | DOI | Zbl

[22] Dubkov A. A., Spagnolo B., Uchaikin V. V., “Lévy flight superdiffusion: an introduction”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18:9 (2008), 2649–2672 | DOI | Zbl

[23] Engel K.-J., Nagel R., One-parameter semigroups for linear evolution equations, Springer, New York, 1999

[24] Gardiner S., Stochastic Methods. A handbook for the natural and social sciences, Springer, Berlin—Heidelberg, 2009 | Zbl

[25] Hille E., Phillips R. S., Functional analysis and semi-groups, Am. Math. Soc., Providence, 1957

[26] Ito K., “On a formula concerning stochastic differentials”, Nagoya Math. J., 3 (1951), 55–65 | DOI | Zbl

[27] Jacob N., Pseudo-differential operators and Markov processes, v. 1, Imperial College Press, London, 2001 | Zbl

[28] Kolokoltsov V. N., Markov processes, semigroups and generators, De Gruyter, Berlin—New York, 2011 | Zbl

[29] Komatsu H., “Ultradistributions, I. Structure theorems and characterization”, J. Fac. Sci. Univ. Tokyo, 20:1 (1973), 25–106

[30] Kunita H., “Ito's stochastic calculus: its surprising power for applications”, Stoch. Process. Their Appl., 120:5 (2010), 622–652 | DOI | Zbl

[31] Melnikova I. V., Stochastic Cauchy problems in infinite dimensions. Regularized and generalized solutions, CRC Press, London—New York, 2016

[32] Melnikova I. V., Alekseeva U. A., “Weak regularized solutions to stochastic Cauchy problems”, Chaotic Model. Simul., 2014, no. 1, 49–56

[33] Melnikova I. V., Filinkov A. I., The Cauchy problem: Three approaches, Chapman Hall/CRC, London—New York, 2001

[34] Oksendal B., Stochastic differential equations, Springer, Berlin, 2003 | Zbl

[35] Protter P. E., Stochastic integration and differential equations, Springer, Berlin—Heidelberg, 2005

[36] Sato K. I., “Basic results on Lévy processes”, Lévy processes theory and applications, Birkhäuser, Boston, 2001, 3–37 | Zbl

[37] Shreve S., Stochastic calculus for finance, v. II, Continuous-time models, Springer, New York, 2004

[38] Taira K., Boundary value problems and Markov processes, Springer, Cham, 2020 | Zbl