Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2021_67_2_a6, author = {I. A. Kolesnikova}, title = {On the construction of a variational principle for a certain class of differential-difference operator equations}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {316--323}, publisher = {mathdoc}, volume = {67}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/} }
TY - JOUR AU - I. A. Kolesnikova TI - On the construction of a variational principle for a certain class of differential-difference operator equations JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 316 EP - 323 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/ LA - ru ID - CMFD_2021_67_2_a6 ER -
%0 Journal Article %A I. A. Kolesnikova %T On the construction of a variational principle for a certain class of differential-difference operator equations %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 316-323 %V 67 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/ %G ru %F CMFD_2021_67_2_a6
I. A. Kolesnikova. On the construction of a variational principle for a certain class of differential-difference operator equations. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 316-323. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/
[1] R. Bellman, K. Kuk, Differentsialno-raznostnye uravneniya, Mir, M., 1967
[2] G. A. Kamenskii, “Variatsionnye i kraevye zadachi s otklonyayuschimsya argumentom”, Diff. uravn., 69:8 (1970), 1349–1358
[3] A. M. Popov, “Usloviya potentsialnosti differentsialno-raznostnykh uravnenii”, Diff. uravn., 34:3 (1998), 422–424 | Zbl
[4] V. M. Savchin, “Usloviya potentsialnosti Gelmgoltsa dlya DUChP s otklonyayuschimisya argumentami”, Tez. dokl. XXXII nauchnoi konf. f-ta fiz.-mat. i estestv. nauk, RUDN, M., 1994, 25
[5] L.È. Èl'sgol'c, Qualitative methods in mathematical analysis, Am. Math. Soc., 1964 | Zbl
[6] V. M. Filippov, V. M. Savchin, S. G. Shorokhov, “Variational principles for nonpotential operators”, J. Math. Sci., 68:3 (1994), 275–398 | DOI
[7] I. A. Kolesnikova, A. M. Popov, V. M. Savchin, “On variational formulations for functional differential equations”, J. Funct. Spaces Appl., 5:1 (2007), 89–101 | DOI | Zbl
[8] V. M. Savchin, “An operator approach to Birkhoff's equation”, Bec. PUDH. Cep. Mat., 2:2 (1995), 111–123 | Zbl
[9] A. L. Skubachevskii, Elliptic functional differential equations and applications, Birkhauser, Basel-Boston-Berlin, 1997 | Zbl