On the construction of a variational principle for a certain class of differential-difference operator equations
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 316-323.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain necessary and sufficient conditions for the existence of variational principles for a given first-order differential-difference operator equation with a special form of the linear operator $P_\lambda(t)$ depending on $t$ and the nonlinear operator $Q.$ Under the corresponding conditions the functional is constructed. These conditions are obtained thanks to the well-known criterion of potentiality. Examples show how the inverse problem of the calculus of variations is constructed for given differential-difference operators.
@article{CMFD_2021_67_2_a6,
     author = {I. A. Kolesnikova},
     title = {On the construction of a variational principle for a certain class of differential-difference operator equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {316--323},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/}
}
TY  - JOUR
AU  - I. A. Kolesnikova
TI  - On the construction of a variational principle for a certain class of differential-difference operator equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 316
EP  - 323
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/
LA  - ru
ID  - CMFD_2021_67_2_a6
ER  - 
%0 Journal Article
%A I. A. Kolesnikova
%T On the construction of a variational principle for a certain class of differential-difference operator equations
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 316-323
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/
%G ru
%F CMFD_2021_67_2_a6
I. A. Kolesnikova. On the construction of a variational principle for a certain class of differential-difference operator equations. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 316-323. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/

[1] R. Bellman, K. Kuk, Differentsialno-raznostnye uravneniya, Mir, M., 1967

[2] G. A. Kamenskii, “Variatsionnye i kraevye zadachi s otklonyayuschimsya argumentom”, Diff. uravn., 69:8 (1970), 1349–1358

[3] A. M. Popov, “Usloviya potentsialnosti differentsialno-raznostnykh uravnenii”, Diff. uravn., 34:3 (1998), 422–424 | Zbl

[4] V. M. Savchin, “Usloviya potentsialnosti Gelmgoltsa dlya DUChP s otklonyayuschimisya argumentami”, Tez. dokl. XXXII nauchnoi konf. f-ta fiz.-mat. i estestv. nauk, RUDN, M., 1994, 25

[5] L.È. Èl'sgol'c, Qualitative methods in mathematical analysis, Am. Math. Soc., 1964 | Zbl

[6] V. M. Filippov, V. M. Savchin, S. G. Shorokhov, “Variational principles for nonpotential operators”, J. Math. Sci., 68:3 (1994), 275–398 | DOI

[7] I. A. Kolesnikova, A. M. Popov, V. M. Savchin, “On variational formulations for functional differential equations”, J. Funct. Spaces Appl., 5:1 (2007), 89–101 | DOI | Zbl

[8] V. M. Savchin, “An operator approach to Birkhoff's equation”, Bec. PUDH. Cep. Mat., 2:2 (1995), 111–123 | Zbl

[9] A. L. Skubachevskii, Elliptic functional differential equations and applications, Birkhauser, Basel-Boston-Berlin, 1997 | Zbl