On the construction of a variational principle for a certain class of differential-difference operator equations
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 316-323

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we obtain necessary and sufficient conditions for the existence of variational principles for a given first-order differential-difference operator equation with a special form of the linear operator $P_\lambda(t)$ depending on $t$ and the nonlinear operator $Q.$ Under the corresponding conditions the functional is constructed. These conditions are obtained thanks to the well-known criterion of potentiality. Examples show how the inverse problem of the calculus of variations is constructed for given differential-difference operators.
@article{CMFD_2021_67_2_a6,
     author = {I. A. Kolesnikova},
     title = {On the construction of a variational principle for a certain class of differential-difference operator equations},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {316--323},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/}
}
TY  - JOUR
AU  - I. A. Kolesnikova
TI  - On the construction of a variational principle for a certain class of differential-difference operator equations
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 316
EP  - 323
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/
LA  - ru
ID  - CMFD_2021_67_2_a6
ER  - 
%0 Journal Article
%A I. A. Kolesnikova
%T On the construction of a variational principle for a certain class of differential-difference operator equations
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 316-323
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/
%G ru
%F CMFD_2021_67_2_a6
I. A. Kolesnikova. On the construction of a variational principle for a certain class of differential-difference operator equations. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 316-323. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/