On the construction of a variational principle for a certain class of differential-difference operator equations
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 316-323
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we obtain necessary and sufficient conditions for the existence of variational principles for a given first-order differential-difference operator equation with a special form of the linear operator $P_\lambda(t)$ depending on $t$ and the nonlinear operator $Q.$ Under the corresponding conditions the functional is constructed. These conditions are obtained thanks to the well-known criterion of potentiality. Examples show how the inverse problem of the calculus of variations is constructed for given differential-difference operators.
@article{CMFD_2021_67_2_a6,
author = {I. A. Kolesnikova},
title = {On the construction of a variational principle for a certain class of differential-difference operator equations},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {316--323},
year = {2021},
volume = {67},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/}
}
TY - JOUR AU - I. A. Kolesnikova TI - On the construction of a variational principle for a certain class of differential-difference operator equations JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 316 EP - 323 VL - 67 IS - 2 UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/ LA - ru ID - CMFD_2021_67_2_a6 ER -
%0 Journal Article %A I. A. Kolesnikova %T On the construction of a variational principle for a certain class of differential-difference operator equations %J Contemporary Mathematics. Fundamental Directions %D 2021 %P 316-323 %V 67 %N 2 %U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/ %G ru %F CMFD_2021_67_2_a6
I. A. Kolesnikova. On the construction of a variational principle for a certain class of differential-difference operator equations. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 316-323. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a6/