Deficiency indices of block Jacobi matrices: survey
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 237-254

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is a survey and concerns with infinite symmetric block Jacobi matrices $\mathbf{J}$ with $m\times m$-matrix entries. We discuss several results on general block Jacobi matrices to be either self-adjoint or have maximal as well as intermediate deficiency indices. We also discuss several conditions for $\mathbf{J}$ to have discrete spectrum.
@article{CMFD_2021_67_2_a2,
     author = {V. Budyka and M. Malamud and K. Mirzoev},
     title = {Deficiency indices of block {Jacobi} matrices: survey},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {237--254},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a2/}
}
TY  - JOUR
AU  - V. Budyka
AU  - M. Malamud
AU  - K. Mirzoev
TI  - Deficiency indices of block Jacobi matrices: survey
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 237
EP  - 254
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a2/
LA  - ru
ID  - CMFD_2021_67_2_a2
ER  - 
%0 Journal Article
%A V. Budyka
%A M. Malamud
%A K. Mirzoev
%T Deficiency indices of block Jacobi matrices: survey
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 237-254
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a2/
%G ru
%F CMFD_2021_67_2_a2
V. Budyka; M. Malamud; K. Mirzoev. Deficiency indices of block Jacobi matrices: survey. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 237-254. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a2/