Deficiency indices of block Jacobi matrices: survey
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 237-254
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is a survey and concerns with infinite symmetric block Jacobi matrices $\mathbf{J}$ with $m\times m$-matrix entries. We discuss several results on general block Jacobi matrices to be either self-adjoint or have maximal as well as intermediate deficiency indices. We also discuss several conditions for $\mathbf{J}$ to have discrete spectrum.
@article{CMFD_2021_67_2_a2,
author = {V. Budyka and M. Malamud and K. Mirzoev},
title = {Deficiency indices of block {Jacobi} matrices: survey},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {237--254},
publisher = {mathdoc},
volume = {67},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a2/}
}
TY - JOUR AU - V. Budyka AU - M. Malamud AU - K. Mirzoev TI - Deficiency indices of block Jacobi matrices: survey JO - Contemporary Mathematics. Fundamental Directions PY - 2021 SP - 237 EP - 254 VL - 67 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a2/ LA - ru ID - CMFD_2021_67_2_a2 ER -
V. Budyka; M. Malamud; K. Mirzoev. Deficiency indices of block Jacobi matrices: survey. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 237-254. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a2/