Direct and inverse problems of spectral analysis for arbitrary-order differential operators with nonintegrable regular singularities
Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 408-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

A short review is presented of results on the spectral theory of arbitrary order ordinary differential operators with non-integrable regular singularities. We establish properties of spectral characteristics, prove theorems on completeness of root functions in the corresponding spaces, prove expansion and equiconvergence theorems, and provide a solution of the inverse spectral problem for this class of operators.
@article{CMFD_2021_67_2_a10,
     author = {V. A. Yurko},
     title = {Direct and inverse problems of spectral analysis for arbitrary-order differential operators with nonintegrable regular singularities},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {408--421},
     publisher = {mathdoc},
     volume = {67},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a10/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - Direct and inverse problems of spectral analysis for arbitrary-order differential operators with nonintegrable regular singularities
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2021
SP  - 408
EP  - 421
VL  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a10/
LA  - ru
ID  - CMFD_2021_67_2_a10
ER  - 
%0 Journal Article
%A V. A. Yurko
%T Direct and inverse problems of spectral analysis for arbitrary-order differential operators with nonintegrable regular singularities
%J Contemporary Mathematics. Fundamental Directions
%D 2021
%P 408-421
%V 67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a10/
%G ru
%F CMFD_2021_67_2_a10
V. A. Yurko. Direct and inverse problems of spectral analysis for arbitrary-order differential operators with nonintegrable regular singularities. Contemporary Mathematics. Fundamental Directions, Dedicated to the memory of Professor N. D. Kopachevsky, Tome 67 (2021) no. 2, pp. 408-421. http://geodesic.mathdoc.fr/item/CMFD_2021_67_2_a10/

[1] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[2] Kostyuchenko A. G., Sargsyan I. S., Raspredelenie sobstvennykh znachenii. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1979

[3] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969

[4] Yurko V. A., “O differentsialnykh operatorakh vysshikh poryadkov s regulyarnoi osobennostyu”, Mat. sb., 186:6 (1995), 133–160 | Zbl

[5] Yurko V. A., Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2007

[6] Ignatiev M. Yu., “Integral transforms connected with differential systems with a singularity”, Tamkang J. Math., 50:3 (2019), 253–268 | DOI | Zbl

[7] Ignatiev M. Yu., “Asymptotics of solutions of some integral equations connected with differential systems with a singularity”, Izv. Saratov. un-ta. Nov. ser. Ser. Mat. Mekh. Inf., 20:1 (2020), 17–28 | Zbl

[8] Turrittin H., “Stokes multipliers for asymptotic solutions of a certain differential equation”, Trans. Am. Math. Soc., 68 (1950), 304–329 | DOI | Zbl

[9] Yurko V. A., “On higher-order differential operators with a singular point”, Inverse Problems, 9:4 (1993), 495–502 | DOI | Zbl

[10] Yurko V. A., Inverse spectral problems for differential operators and their applications, Gordon and Breach Sci. Publ., Amsterdam, 2000 | Zbl

[11] Yurko V. A., “Higher-order differential equations having a singularity in an interior point”, Results Math., 42:1-2 (2002), 177–191 | DOI | Zbl

[12] Yurko V. A., “Integral transforms connected with higher-order differential operators with a singularity”, Integral Transforms Spec. Funct., 13:6 (2002), 497–511 | DOI | Zbl