Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2020_66_3_a0, author = {A. M. Savchuk and I. V. Sadovnichaya}, title = {Spectral analysis of one-dimensional {Dirac} system with summable potential and {Sturm--Liouville} operator with distribution coefficients}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {373--530}, publisher = {mathdoc}, volume = {66}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2020_66_3_a0/} }
TY - JOUR AU - A. M. Savchuk AU - I. V. Sadovnichaya TI - Spectral analysis of one-dimensional Dirac system with summable potential and Sturm--Liouville operator with distribution coefficients JO - Contemporary Mathematics. Fundamental Directions PY - 2020 SP - 373 EP - 530 VL - 66 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2020_66_3_a0/ LA - ru ID - CMFD_2020_66_3_a0 ER -
%0 Journal Article %A A. M. Savchuk %A I. V. Sadovnichaya %T Spectral analysis of one-dimensional Dirac system with summable potential and Sturm--Liouville operator with distribution coefficients %J Contemporary Mathematics. Fundamental Directions %D 2020 %P 373-530 %V 66 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2020_66_3_a0/ %G ru %F CMFD_2020_66_3_a0
A. M. Savchuk; I. V. Sadovnichaya. Spectral analysis of one-dimensional Dirac system with summable potential and Sturm--Liouville operator with distribution coefficients. Contemporary Mathematics. Fundamental Directions, Spectral Analysis, Tome 66 (2020) no. 3, pp. 373-530. http://geodesic.mathdoc.fr/item/CMFD_2020_66_3_a0/