Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain
Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 635-654
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider strongly elliptic differential-difference equations
with mixed boundary conditions in a cylindrical domain. We
establish the connection between such problems and nonlocal mixed
problems for strongly elliptic differential equations, and prove
the uniqueness of solutions.
@article{CMFD_2019_65_4_a6,
author = {V. V. Liiko and A. L. Skubachevskii},
title = {Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {635--654},
publisher = {mathdoc},
volume = {65},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a6/}
}
TY - JOUR AU - V. V. Liiko AU - A. L. Skubachevskii TI - Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 635 EP - 654 VL - 65 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a6/ LA - ru ID - CMFD_2019_65_4_a6 ER -
%0 Journal Article %A V. V. Liiko %A A. L. Skubachevskii %T Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain %J Contemporary Mathematics. Fundamental Directions %D 2019 %P 635-654 %V 65 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a6/ %G ru %F CMFD_2019_65_4_a6
V. V. Liiko; A. L. Skubachevskii. Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 635-654. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a6/