Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain
Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 635-654.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider strongly elliptic differential-difference equations with mixed boundary conditions in a cylindrical domain. We establish the connection between such problems and nonlocal mixed problems for strongly elliptic differential equations, and prove the uniqueness of solutions.
@article{CMFD_2019_65_4_a6,
     author = {V. V. Liiko and A. L. Skubachevskii},
     title = {Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {635--654},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a6/}
}
TY  - JOUR
AU  - V. V. Liiko
AU  - A. L. Skubachevskii
TI  - Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 635
EP  - 654
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a6/
LA  - ru
ID  - CMFD_2019_65_4_a6
ER  - 
%0 Journal Article
%A V. V. Liiko
%A A. L. Skubachevskii
%T Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 635-654
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a6/
%G ru
%F CMFD_2019_65_4_a6
V. V. Liiko; A. L. Skubachevskii. Strongly elliptic differential-difference equations with mixed boundary conditions in a cylindric domain. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 635-654. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a6/

[1] A. B. Antonevich, “On the index and normal solvability of general elliptic boundary-value problem with a finite group of shifts on the boundary”, Differ. Equ., 8:2 (1972), 309–317 (in Russian) | Zbl

[2] A. V. Bitsadze, A. A. Samarskii, “On some simplest generalizations of linear elliptic boundary-value problems”, Rep. Acad. Sci. USSR, 185:4 (1969), 739–740 (in Russian) | Zbl

[3] V. V. Vlasov, R. Perez Ortiz, N. A. Rautian, “Investigation of Volterra integrodifferential equations with kernels depending of a parameter”, Differ. Equ., 54:3 (2018), 369–386 (in Russian) | DOI | Zbl

[4] V. V. Vlasov, N. A. Rautian, Spectral Analysis of Functional Differential Equations, MAKS Press, M., 2016 (in Russian)

[5] V. V. Vlasov, N. A. Rautian, “Investigation of functional differential equations with unbounded operator coefficients”, Rep. Russ. Acad. Sci., 477:6 (2017), 641–645 (in Russian) | DOI | Zbl

[6] O. A. Ladyzhenskaya, N. N. Ural'tseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, M., 1964 (in Russian) | MR

[7] V. S. Rabinovich, “On solvability of differential-difference equations in $\mathbb{R}^n$ and in the half-space”, Rep. Acad. Sci. USSR, 243:5 (1978), 1134–1137 (in Russian) | MR | Zbl

[8] L. E. Rossovskii, “Elliptic functional differential equations with contractions and extensions of independent variables of the unknown function”, Contemp. Math. Fundam. Directions, 54, 2014, 3–138 (in Russian)

[9] A. L. Skubachevskii, “On the spectrum of some nonlocal elliptic boundary-value problems”, Math. Digest, 117:4 (1982), 548–558 (in Russian) | MR

[10] A. L. Skubachevskii, “Boundary-value problems for elliptic differential-difference equations and their applications”, Progr. Math. Sci., 71:5 (2016), 3–112 (in Russian) | DOI | MR | Zbl

[11] A. L. Skubachevskii, E. L. Tsvetkov, “The second boundary-value problem for elliptic differential-difference equation”, Differ. Equ., 25:10 (1989), 1766–1776 (in Russian) | MR

[12] O. V. Solonukha, “On one nonlinear nonlocal problem of elliptic type”, J. Comput. Math. Math. Phys., 57:3 (2017), 417–428 (in Russian) | DOI | MR | Zbl

[13] F. Browder, “Non-local elliptic boundary value problems”, Am. J. Math., 86:4 (1964), 735–750 | DOI | MR | Zbl

[14] T. Carleman, “Sur la théorie des équations intégrales et ses applications”, Verhandlungen des Internat. Math. Kongr. Zürich, v. 1, 1932, 138–151 | MR

[15] F. Hartman, G. Stampacchia, “On some non-linear elliptic differential-functional equations”, Acta Math., 115 (1966), 271–230 | DOI | MR

[16] T. Kato, “Fractional powers of dissipative operators”, J. Math. Soc. Jpn., 13:3 (1961), 246–274 | DOI | MR | Zbl

[17] G. G. Onanov, A. L. Skubachevskii, “Nonlocal problems in the mechanics of three-layer shells”, Math. Model. Nat. Phenom., 12:6 (2017), 192–207 | DOI | MR | Zbl

[18] G. G. Onanov, E. L. Tsvetkov, “On the minimum of the energy functional with respect to functions with deviating argument in a stationary problem of elasticity theory”, Russ. J. Math. Phys., 3:4 (1995), 491–500 | MR | Zbl

[19] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Birkhäuser, Basel—Boston—Berlin, 1997 | MR | Zbl

[20] A. L. Skubachevskii, “Elliptic differential-difference operators with degeneration and the Kato square root problem”, Math. Nachr., 291 (2018), 2660–2692 | DOI | MR | Zbl

[21] O. V. Solonukha, “On nonlinear and quasilinear elliptic functional-differential equations”, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 847–868 | DOI | MR