On Asymptotics of the Density of States for Hypoelliptic Almost Periodic Systems
Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 593-604.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we find the asymptotics of integrated density of states with remainder estimate for hypoelliptic systems with almost periodic (a.p.) coefficients. We use the approximate spectral projector method for matrix a.p. operators with continuous spectrum.
@article{CMFD_2019_65_4_a2,
     author = {V. I. Bezyaev},
     title = {On {Asymptotics} of the {Density} of {States} for {Hypoelliptic} {Almost} {Periodic} {Systems}},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {593--604},
     publisher = {mathdoc},
     volume = {65},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a2/}
}
TY  - JOUR
AU  - V. I. Bezyaev
TI  - On Asymptotics of the Density of States for Hypoelliptic Almost Periodic Systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 593
EP  - 604
VL  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a2/
LA  - ru
ID  - CMFD_2019_65_4_a2
ER  - 
%0 Journal Article
%A V. I. Bezyaev
%T On Asymptotics of the Density of States for Hypoelliptic Almost Periodic Systems
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 593-604
%V 65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a2/
%G ru
%F CMFD_2019_65_4_a2
V. I. Bezyaev. On Asymptotics of the Density of States for Hypoelliptic Almost Periodic Systems. Contemporary Mathematics. Fundamental Directions, Proceedings of the S.M. Nikolskii Mathematical Institute of RUDN University, Tome 65 (2019) no. 4, pp. 593-604. http://geodesic.mathdoc.fr/item/CMFD_2019_65_4_a2/

[1] V. I. Bezyaev, “Asymptotics of the density of states of hypoelliptic almost periodic operators”, Math. Digest, 24:7 (1978), 485–511 (in Russian) | MR

[2] S. Z. Levendorskiy, “Method of approximate spectral projector”, Bull. Acad. Sci. USSR. Ser. Math., 49:6 (1985), 1177–1228 (in Russian) | MR

[3] G. V. Rozenblyum, M. Z. Solomyak, M. A. Shubin, “Spectral theory of differential operators”, Totals Sci. Tech. Contemp. Probl. Math., 64, 1989, 5–242 (in Russian)

[4] V. N. Tulovskiy, M. A. Shubin, “On asymptotic distribution of eigenvalues of pseudodifferential operators in $R^n$”, Math. Digest, 92:4 (1973), 571–588 (in Russian) | MR | Zbl

[5] V. I. Feygin, “Asymptotic distribution of eigenvalues for hypoelliptic systems in $\mathbb R^n$”, Math. Digest, 99:4 (1976), 594–614 (in Russian) | MR | Zbl

[6] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Russian translation, Mir, M., 1986

[7] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. III, Russian translation, Mir, M., 1987

[8] M. A. Shubin, “Pseudodifferential almost periodic operators and von Neumann algebras”, Proc. Mosk. mat. Moscow Math. Soc., 35, 1976, 103–164 (in Russian) | Zbl

[9] M. A. Shubin, “The Weil theorem for the Schrödinger operator with almost periodic potential”, Bull. Moscow Univ. Ser. 1. Math. Mech., 1976, no. 2, 84–88 (in Russian) | Zbl

[10] M. A. Shubin, “Density of states for self-adjoint elliptic operators with almost periodic coefficients”, Proc. sem. im. I. G. Petrovskii Semin., 3, 1978, 243–275 (in Russian) | Zbl

[11] L. A. Coburn, R. D. Moyer, I. M. Singer, “$C^*$-algebras of almost periodic pseudo-differential operators”, Acta Math., 130 (1973), 279–307 | DOI | MR | Zbl

[12] J. Dixmier, Les algebres d'operateurs dans l'espace hilbertien (algebres de von Neumann), Gauthier-Villars, Paris, 1969 | MR | Zbl

[13] A. I. Karol', “Asymptotic behavior of the spectrum of pseudodifferential operators of variable order”, J. Math. Sci. (N. Y.), 207:2 (2015), 236–248 | DOI | MR | Zbl

[14] H. Kumano-go, “Algebras of pseudo-differential operators”, J. Fac. Sci. Univ. Tokyo. Sec. 1A, 17 (1970), 31–50 | MR | Zbl