On inner regularity of solutions of two-dimensional Zakharov--Kuznetsov equation
Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 65 (2019) no. 3, pp. 513-546

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider questions of inner regularity of weak solutions of initial-boundary value problems for the Zakharov–Kuznetsov equation with two spatial variables. The initial function is assumed to be irregular, and the main parameter governing the regularity is the decay rate of the initial function at infinity. The main results of the paper are obtained for the problem on a semistrip. In this problem, different types of initial conditions (e. g., Dirichlet or Neumann conditions) influence the inner regularity. We also give a survey of earlier results for other types of areas: a plane, a half-plane, and a strip.
@article{CMFD_2019_65_3_a3,
     author = {A. V. Faminskii},
     title = {On inner regularity of solutions of two-dimensional {Zakharov--Kuznetsov} equation},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {513--546},
     publisher = {mathdoc},
     volume = {65},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a3/}
}
TY  - JOUR
AU  - A. V. Faminskii
TI  - On inner regularity of solutions of two-dimensional Zakharov--Kuznetsov equation
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 513
EP  - 546
VL  - 65
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a3/
LA  - ru
ID  - CMFD_2019_65_3_a3
ER  - 
%0 Journal Article
%A A. V. Faminskii
%T On inner regularity of solutions of two-dimensional Zakharov--Kuznetsov equation
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 513-546
%V 65
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a3/
%G ru
%F CMFD_2019_65_3_a3
A. V. Faminskii. On inner regularity of solutions of two-dimensional Zakharov--Kuznetsov equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 65 (2019) no. 3, pp. 513-546. http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a3/