Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_3_a3, author = {A. V. Faminskii}, title = {On inner regularity of solutions of two-dimensional {Zakharov--Kuznetsov} equation}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {513--546}, publisher = {mathdoc}, volume = {65}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a3/} }
TY - JOUR AU - A. V. Faminskii TI - On inner regularity of solutions of two-dimensional Zakharov--Kuznetsov equation JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 513 EP - 546 VL - 65 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a3/ LA - ru ID - CMFD_2019_65_3_a3 ER -
A. V. Faminskii. On inner regularity of solutions of two-dimensional Zakharov--Kuznetsov equation. Contemporary Mathematics. Fundamental Directions, Proceedings of the Crimean autumn mathematical school-symposium, Tome 65 (2019) no. 3, pp. 513-546. http://geodesic.mathdoc.fr/item/CMFD_2019_65_3_a3/
[1] A. P. Antonova, A. V. Faminskiy, “On regularity of solutions of the Cauchy problems for the Zakharov–Kuznetsov equation in Hölder norms”, Math. Notes, 97:1 (2015), 13–22 (in Russian) | DOI | MR | Zbl
[2] A. P. Antonova, A. V. Faminskiy, “On regularity of solutions for initial-boundary value problems for the Zakharov–Kuznetsov equation”, Contemp. Math. Fundam. Directions, 58, 2015, 5–21 (in Russian)
[3] O. V. Besov, V. P. Il'in, S. M. Nikol'skiy, Integral Representation of Functions and Embedding Theorems, Nauka, M., 1996 (in Russian)
[4] V. E. Zakharov, E. A. Kuznetsov, “On three-dimensional solitons”, J. Exper. Theor. Phys., 66:2 (1974), 594–597 (in Russian)
[5] S. N. Kruzhkov, A. V. Faminskiy, “Generalized solutions of the Cauchy problem for the Korteweg–de Vries equation”, Math. Digest, 120:3 (1983), 396–425 (in Russian) | MR | Zbl
[6] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Ural'tseva, Linear and Quasilinear Equation of Parabolic Type, Nauka, M., 1967 (in Russian) | MR
[7] A. V. Faminskiy, “The Cauchy problem for the Korteweg–de Vries equation and its generalizations”, Proc. Petrovskii Semin., 13, 1988, 56–105 (in Russian)
[8] A. V. Faminskiy, “Mixed problem in a half-strip for the Korteweg–de Vries equation and its generalizations”, Proc. Moscow Math. Soc., 51, 1988, 54–94 (in Russian)
[9] A. V. Faminskiy, “The Cauchy problem for quasilinear equations of odd order”, Math. Digest, 180:9 (1989), 1183–1210 (in Russian)
[10] A. V. Faminskiy, “The Cauchy problem for the Zakharov–Kuznetsov equation”, Differ. Equ., 31:6 (1995), 1070–1081 (in Russian) | MR
[11] Baykova E. S., Faminskii A. V., “On initial-boundary-value problems in a strip for the generalized two-dimensional Zakharov–Kuznetsov equation”, Adv. Differ. Equ., 18:7-8 (2013), 663–686 | MR | Zbl
[12] Biagioni H. A., Linares F., “Well-posedness for the modified Zakharov–Kuznetsov equation”, Progr. Nonlinear Differ. Equ. Appl., 54 (2003), 181–189 | MR | Zbl
[13] Bustamante E., Jimenez Urrea J., Mejia J., “The Zakharov–Kuznetsov equation in weighted Sobolev spaces”, J. Math. Anal. Appl., 433:1 (2016), 149–175 | DOI | MR | Zbl
[14] Constantin P., Saut J.-C., “Local smoothing properties of dispersive equations”, J. Am. Math. Soc., 1:2 (1988), 413–446 | DOI | MR
[15] Faminskii A. V., “On the mixed problem for quasilinear equations of the third order”, J. Math. Sci., 110:2 (2002), 2476–2507 | DOI | MR | Zbl
[16] Faminskii A. V., “Nonlocal well-posedness of the mixed problem for the Zakharov–Kuznetsov equation”, J. Math. Sci., 147:1 (2007), 6524–6537 | DOI | MR | Zbl
[17] Faminskii A. V., “Well posed initial-boundary value problems for the Zakharov–Kuznetsov equation”, Electron. J. Differ. Equ., 2008, no. 1, 1–20 | MR
[18] Faminskii A. V., “Weak solutions to initial-boundary-value problems for quasilinear equations of an odd order”, Adv. Differ. Equ., 17:5-6 (2012), 421–470 | MR | Zbl
[19] Faminskii A. V., “An initial-boundary value problem in a strip for two-dimensional equations of Zakharov–Kuznetsov type”, Contemp. Math., 653, 2015, 137–162 | DOI | MR | Zbl
[20] Faminskii A. V., “An initial-boundary value problem in a strip for two-dimensional Zakharov–Kuznetsov–Burgers equation”, Nonlinear Anal., 116 (2015), 132–144 | DOI | MR | Zbl
[21] Faminskii A. V., “An initial-boundary value problem for three-dimensional Zakharov–Kuznetsov equation”, J. Differ. Equ., 260:3 (2016), 3029–3055 | DOI | MR | Zbl
[22] Faminskii A. V., “Initial-boundary value problems in a half-strip for two-dimensional Zakharov–Kuznetsov equation”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35:5 (2018), 1235–1265 | DOI | MR | Zbl
[23] Faminskii A. V., Regular solutions to initial-boundary value problems in a half-strip for two-dimensional Zakharov–Kuznetsov equation, 14 Jan. 2019, arXiv: 1901.04483 [math.AP] | MR
[24] Faminskii A. V., Antonova A. P., “On internal regularity of solutions to the initial value problem for the Zakharov–Kuznetsov equation”, Progress in partial differential equations, Springer, Cham, 2013, 53–74 | MR | Zbl
[25] Farah L. G., Linares F., Pastor A., “A note on the 2D generalized Zakharov–Kuznetsov equation: local, global and scattering results”, J. Differ. Equ., 253:8 (2012), 2558–2571 | DOI | MR | Zbl
[26] Fonseca G., Panchón M., “Well-posedness for the two dimensional generalized Zakharov–Kuznetsov equation in anisotropic weighted Sobolev spaces”, J. Math. Anal. Appl., 443:1 (2016), 566–584 | DOI | MR | Zbl
[27] Grünrock A., “Remark on the modified Zakharov–Kuznetsov equation in three space dimensions”, Math. Res. Lett., 21:1 (2014), 127–131 | DOI | MR | Zbl
[28] Grünrock A., On the generalized Zakharov–Kuznetsov equation at critical regularity, 30 Sep. 2015, arXiv: 1509.09146v1 [math.AP]
[29] Grünrock A., Herr S., “The Fourier restriction norm method for the Zakharov–Kuznetsov equation”, Discrete Contin. Dyn. Syst., 34:5 (2014), 2061–2068 | DOI | MR | Zbl
[30] Han-Kwan D., “From Vlasov–Poisson to Korteweg–de Vries and Zakharov–Kuznetsov”, Commun. Math. Phys., 324:3 (2013), 961–993 | DOI | MR | Zbl
[31] Kato T., “The Cauchy problem for the Korteweg–de Vries equation”, Nonlinear partial differential equations and their applications, College de France Seminar, v. I, Pitman, Boston–London–Melbourne, 1981, 293–307 | MR
[32] Kato T., “On the Cauchy problem for the (generalized) Korteweg–de Vries equation”, Stud. Appl. Math., 8 (1983), 93–128 | MR | Zbl
[33] Kato T., “Well-posedness for the generalized Zakharov–Kuznetsov equation in modulation spaces”, J. Fourier Anal. Appl., 23:3 (2017), 612–655 | DOI | MR | Zbl
[34] Kenig C. E., Ponce G., Vega L., “Well-posedness of the initial value problem for the Korteweg–de Vries equation”, J. Am. Math. Soc., 4:2 (1991), 323–347 | DOI | MR | Zbl
[35] Kenig C. E., Ponce G., Vega L., “Oscillatory integrals and regularity of dispersive equations”, Indiana Univ. Math. J., 40:1 (1991), 33–69 | DOI | MR | Zbl
[36] Lannes D., Linares F., Saut J.-C., “The Cauchy problem for the Euler–Poisson system and derivation of the Zakharov–Kuznetsov equation”, Progr. Nonlinear Differ. Equ. Appl., 84 (2013), 183–215 | MR
[37] Larkin N. A., “Exponential decay of the $H^1$-norm for the 2D Zakharov–Kuznetsov equation on a half-strip”, J. Math. Anal. Appl., 405:1 (2013), 326–335 | DOI | MR | Zbl
[38] Larkin N. A., “The 2D Zakharov–Kuznetsov–Burgers equation with variable dissipation on a strip”, Electron. J. Differ. Equ., 60 (2015), 1–20 | MR
[39] Larkin N. A., “The 2D Zakharov–Kuznetsov–Burgers equation on a strip”, Bol. Soc. Parana Mat. (3), 34:1 (2016), 151–172 | DOI | MR | Zbl
[40] Larkin N. A., Tronco E., “Regular solutions of the 2D Zakharov–Kuznetsov equation on a half-strip”, J. Differ. Equ., 254:1 (2013), 81–101 | DOI | MR | Zbl
[41] Levandosky J. L., “Smoothing properties of nonlinear dispersive equations in two spatial dimensions”, J. Differ. Equ., 175:2 (2001), 275–301 | DOI | MR
[42] Linares F., Pastor A., “Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equation”, SIAM J. Math. Anal., 41:4 (2009), 1323–1339 | DOI | MR | Zbl
[43] Linares F., Pastor A., “Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation”, J. Funct. Anal., 260:4 (2011), 1060–1085 | DOI | MR | Zbl
[44] Linares F., Pastor A., Saut J.-C., “Well-posedness for the Zakharov–Kuznetsov equation in a cylinder and on the background of a KdV soliton”, Commun. Part. Differ. Equ., 35:9 (2010), 1674–1689 | DOI | MR | Zbl
[45] Linares F., Ponce G., “On special regularity properties of solutions of the Zakharov–Kuznetsov equation”, Commun. Pure Appl. Anal., 17:4 (2018), 1561–1572 | DOI | MR | Zbl
[46] Linares F., Saut J. C., “The Cauchy problem for the 3D Zakharov–Kuznetsov equation”, Discrete Contin. Dyn. Syst., 24:2 (2009), 547–565 | DOI | MR | Zbl
[47] Molinet L., Pilod D., “Bilinear Strichartz estimates for the Zakharov–Kuznetsov equation and applications”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32:2 (2015), 347–371 | DOI | MR | Zbl
[48] Ribaud F., Vento S., “Well-posedness results for the 3D Zakharov–Kuznetsov equation”, SIAM J. Math. Anal., 44:4 (2012), 2289–2304 | DOI | MR | Zbl
[49] Ribaud F., Vento S., “A note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equation”, C. R. Math. Acad. Sci. Paris, 350:9-10 (2012), 499–503 | DOI | MR | Zbl
[50] Saut J.-C., “Sur quelques generalizations de l'equation de Korteweg–de Vries”, J. Math. Pures Appl. (9), 58:1 (1979), 21–61 | MR | Zbl
[51] Shan M., Well-posedness for the two-dimensional Zakharov–Kuznetsov equation, 15 Aug. 2018, arXiv: 1807.10123v2 [math.AP] | MR