Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_2_a0, author = {E. L. Shishkina}, title = {General {Euler--Poisson--Darboux} equation and hyperbolic $B$-potentials}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {157--338}, publisher = {mathdoc}, volume = {65}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_2_a0/} }
TY - JOUR AU - E. L. Shishkina TI - General Euler--Poisson--Darboux equation and hyperbolic $B$-potentials JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 157 EP - 338 VL - 65 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_2_a0/ LA - ru ID - CMFD_2019_65_2_a0 ER -
E. L. Shishkina. General Euler--Poisson--Darboux equation and hyperbolic $B$-potentials. Contemporary Mathematics. Fundamental Directions, Partial differential equations, Tome 65 (2019) no. 2, pp. 157-338. http://geodesic.mathdoc.fr/item/CMFD_2019_65_2_a0/
[1] M. Abramowitz, I. Stegun, Handbook Of Mathematical Functions, Nauka, M., 1979 (Russian translation)
[2] J. Hadamard, Cauchy's Problem in Linear Partial Differential Equations of Hyperbolic Type, Nauka, M., 1978 (Russian translation)
[3] O. P. Barabash, E. L. Shishkina, “Solution of the general Euler–Poisson–Darboux equation containing the Bessel operator with respect to all variables”, Bull. Tambov Univ. Ser. Nat. Tech. Sci., 2016, no. 6, 2146–2151 (in Russian)
[4] J. Bergh, J. Lefstrem, Interpolation Spaces, Mir, M., 1980 (Russian translation)
[5] Yu. M. Berezanskiy, “On operator generated by ultrahyperbolic differential expression”, Ukr. Math. J., 11:3 (1959), 315–321 (in Russian)
[6] L. Bers, F. John, M. Schechter, Partial Differential Equations, Mir, M., 1966 (in Russian)
[7] O. V. Besov, V. P. Il'in, S. M. Nikol'skiy, Integral Representations of Functions and Embedding Theorems, Nauka, M., 1975 (in Russian)
[8] A. S. Blagoveshchenskiy, “On some correct problems for ultrahyperbolic and wave equation with data on characteristic cone”, Rep. Acad. Sci. USSR, 140:5 (1961), 990–993 (in Russian)
[9] A. S. Blagoveshchenskiy, “On the characteristic problem for an ultrahyperbolic equation”, Math. Digest, 63:1 (1964), 137–168 (in Russian)
[10] G. N. Watson, A Treatise on the Theory of Bessel Functions, v. 1, IL, M., 1949 (Russian translation)
[11] V. S. Vladimirov, Equations of Mathematical Physics, Textbook, Nauka, M., 1981 (in Russian) | MR
[12] V. S. Vladimirov, V. V. Zharinov, Equations of Mathematical Physics, Fizmatlit, M., 2004 (in Russian)
[13] V. Ya. Volk, “On inversion formulas for a differential equation with singularity at $x=0$”, Progr. Math. Sci., 111:4 (1953), 141–151 (in Russian)
[14] “Abstract Euler–Poisson–Darboux equation containing powers of an unbounded operator”, Differ. Equ., 37:5 (2001), 706–709 (in Russian) | MR | Zbl
[15] I. M. Gel'fand, G. E. Shilov, Generalized Functions and Operations over Them, Textbook, Fizmatlit, M., 1958 (in Russian)
[16] I. M. Gel'fand, G. E. Shilov, Some Issues of the Theory of Differential Equations, Generalized Functions, 3, Fizmatlit, M., 1958 (in Russian)
[17] A. V. Glushak, “On one abstract Euler–Poisson–Darboux equation with lower-order term containing a singularity”, Bull. Higher Edu. Inst. Ser. Math., 1995, no. 3, 3–7 (in Russian) | MR | Zbl
[18] A. V. Glushak, “On perturbation of abstract Euler–Poisson–Darboux equation”, Math. Notes, 60:3 (1996), 363–369 (in Russian) | DOI | MR | Zbl
[19] A. V. Glushak, “Regular and singular perturbations of abstract Euler–Poisson–Darboux equation”, Math. Notes, 66:3 (1999), 364–371 (in Russian) | DOI | MR | Zbl
[20] A. V. Glushak, “Nonlocal problem for abstract Euler–Poisson–Darboux equation”, Bull. Higher Edu. Inst. Ser. Math., 2016, no. 6, 27–35 (in Russian) | Zbl
[21] A. V. Glushak, “Operator formula of translation of solution for the Cauchy problem for abstract Euler–Poisson–Darboux equation”, Math. Notes, 105:5 (2019), 656–665 (in Russian) | DOI | MR | Zbl
[22] A. V. Glushak, O. A. Pokruchin, “Solvability criterion for the Cauchy problem for abstract Euler–Poisson–Darboux equation”, Differ. Equ., 52:1 (2016), 41–59 (in Russian) | DOI | MR | Zbl
[23] A. V. Glushak, V. A. Popova, “Inverse problem for abstract Euler–Poisson–Darboux equation”, Contemp. Math. Fundam. Directions, 15, 2006, 126–141 (in Russian)
[24] A. V. Glushak, T. G. Romanchenko, “Relation formulas between solutions of abstract singular differential equations”, Sci. Bull. Belgorod State Univ. Ser. Math. Phys., 42:6 (2016), 36–39 (in Russian)
[25] M. L. Gol'dman, “Generalized kernels of fractional order”, Differ. Equ., 7:12 (1971), 2199–2210 (in Russian) | Zbl
[26] M. L. Gol'dman, “Integral properties of generalized Bessel potentials”, Rep. Russ. Acad. Sci., 414:2 (2007), 159–164 (in Russian) | Zbl
[27] M. L. Gol'dman, “Permutably invariant hulls of generalized Bessel and Riesz potentials”, Rep. Russ. Acad. Sci., 423:1 (2008), 14–18 (in Russian) | DOI | Zbl
[28] M. L. Gol'dman, “Cone of permutations for generalized Bessel potentials”, Proc. Math. Inst. Russ. Acad. Sci., 260, 2008, 151–163 (in Russian) | Zbl
[29] M. L. Gol'dman, “Optimal embeddings of Bessel-type and Riesz-type potentials”, Rep. Russ. Acad. Sci., 428:3 (2009), 305–309 (in Russian) | Zbl
[30] M. L. Gol'dman, “On optimal embeddings of generalized Bessel and Riesz potentials”, Proc. Math. Inst. Russ. Acad. Sci., 269, 2010, 91–111 (in Russian) | Zbl
[31] M. L. Gol'dman, O. M. Gusel'nikova, “Optimal embeddings of Bessel-type and Riesz-type potentials. V. 1”, Bull. RUND Univ. Ser. Math. Inform. Phys., 2011, no. 3, 4–16 (in Russian)
[32] M. L. Gol'dman, A. V. Malysheva, “On estimate of uniform continuity module of generalized Bessel potential”, Proc. Math. Inst. Russ. Acad. Sci., 283, 2013, 80–91 (in Russian) | Zbl
[33] A. M. Gordeev, “Some boundary-value problems for generalized Euler–Poisson–Darboux equation”, Volga Math. Digest, 1968, no. 6, 56–61 (in Russian)
[34] D. S. Donchev, S. M. Sitnik, E. L. Shishkina, “On generalization of the binomial theorem arising in the theory of differential equations”, Sci. Bull. Belgorod State Univ. Ser. Math. Phys., 49:27 (2017), 19–25 (in Russian)
[35] D. S. Donchev, S. M. Sitnik, E. L. Shishkina, “On refinements of the neoclassical inequality and its applications in the theory of stochastic differential equations and Brownian motion”, Chelyabinsk Phys. Math. J., 2:3 (2017), 257–265 (in Russian)
[36] Ya. I. Zhitomirskiy, “The Cauchy problem for systems of linear partial differential equations with Bessel-type differential operators”, Math. Digest, 36:2 (1955), 299–310 (in Russian)
[37] G. Ya. Zagorskiy, Mixed Problems for Systems of Partial Differential Equations of Parabolic Type, Izd-vo L'vovskogo un-ta, L'vov, 1961 (in Russian)
[38] V. A. Il'in, “Kernels of fractional order”, Math. Digest, 41:4 (1957), 459–480 (in Russian) | Zbl
[39] F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, IL, M., 1958 (Russian translation)
[40] Sh. T. Karimov, “Multidimensional Erdélyi–Kober operator and its applications to solving of Cauchy problem for three–dimensional hyperbolic equation with singular coefficients”, Uzb. Math. J., 2013, no. 1, 70–80 (in Russian)
[41] Sh. T. Karimov, “On a method of solution of the Cauchy problem for a generalized Euler–Poisson–Darboux equation”, Uzb. Math. J., 2013, no. 3, 57–69 (in Russian)
[42] Sh. T. Karimov, “Solution of the Cauchy problem for a multidimensional hyperbolic equation with singular coefficients by the method of fractional integrals”, Rep. Acad. Sci. Resp. Uzbekistan, 2013, no. 1, 11–13 (in Russian)
[43] Sh. T. Karimov, “Solution of the Cauchy problem for three-dimensional hyperbolic equation with singular coefficients and spectral parameter”, Uzb. Math. J., 2014, no. 2, 55–65 (in Russian)
[44] Sh. T. Karimov, “On some generalizations of properties of the Erdélyi–Kober operator and their applications”, Bull. KRAUNTz. Phys. Math. Sci., 2017, no. 2, 20–40 (in Russian) | Zbl
[45] Sh. T. Karimov, “On a method of solution of the Cauchy problem for one-dimensional polywave equation with singular Bessel operator”, Bull. Acad. Sci. USSR. Ser. Math., 2017, no. 8, 27–41 (in Russian) | Zbl
[46] Sh. T. Karimov, “On one method of solution for an analog of the Cauchy problem for a polycaloric equation with singular Bessel operator”, Ukr. Math. J., 69:10 (2017), 1372–1384 (in Russian)
[47] D. B. Karp, S. M. Sitnik, “Fractional Hankel transforms and its applications”, Abstr. of Voronezh. Spring Math. School (17–23 Apr. 1996), VGU, Voronezh, 1996, 92 (in Russian)
[48] V. V. Katrakhov, “General boundary-value problems for a class of singular and degenerated elliptic equations”, Math. Digest, 112:3 (1980), 354–379 (in Russian) | MR | Zbl
[49] V. V. Katrakhov, S. M. Sitnik, “Factorization method in the transmutation theory”, Memorial Digest to the Memory of Boris A. Bubnov: Nonclassical Equations and Mixed-Type Equations, Novosibirsk, 1990, 104–122 (in Russian) | Zbl
[50] V. V. Katrakhov, S. M. Sitnik, “Composition method for constructing $B$-elliptic, $B$-hyperbolic and $B$-parabolic transmutations”, Rep. Russ. Acad. Sci., 337:3 (1994), 307–311 (in Russian) | Zbl
[51] V. V. Katrakhov, S. M. Sitnik, “The transmutation method and boundary-value problems for singular elliptic equations”, Contemp. Math. Fundam. Directions, 64, no. 2, 2018, 211–426 (in Russian) | MR
[52] I. A. Kipriyanov, “On boundary-value problems for partial differential equations with Bessel differential operator”, Rep. Acad. Sci. USSR, 158:2 (1964), 275–278 (in Russian) | Zbl
[53] I. A. Kipriyanov, “Fourier–Bessel transforms and embedding theorems for weighted classes”, Proc. Math. Inst. Russ. Acad. Sci., 89, 1967, 130–213 (in Russian) | Zbl
[54] I. A. Kipriyanov, “Boundary–value problems for singular elliptic partial differential operators”, Rep. Acad. Sci. USSR, 195:1 (1970), 32–35 (in Russian) | Zbl
[55] I. A. Kipriyanov, “On a class of singular elliptic operators”, Differ. Equ., 7:11 (1971), 2065–2077 (in Russian) | MR
[56] I. A. Kipriyanov, “On a class of singular elliptic equations”, Siberian Math. J., 14:3 (1973), 560–568 (in Russian) | Zbl
[57] I. A. Kipriyanov, Singular Elliptic Boundary-Value Problems, Fizmatlit, M., 1997 (in Russian)
[58] I. A. Kipriyanov, Yu. V. Zasorin, “On fundamental solution of wave equation with several singularities and on Huygens's principle”, Differ. Equ., 28:3 (1992), 452–462 (in Russian) | MR | Zbl
[59] I. A. Kipriyanov, L. A. Ivanov, “On lacunas for some classes of singular equations”, Math. Digest, 110:2 (1979), 235–250 (in Russian) | MR | Zbl
[60] I. A. Kipriyanov, L. A. Ivanov, “Fundamental solutions of homogeneous $B$-hyperbolic equations”, Siberian Math. J., 21:4 (1980), 95–102 (in Russian) | MR | Zbl
[61] I. A. Kipriyanov, L. A. Ivanov, “Euler–Poisson–Darboux equation in the Riemann space”, Rep. Acad. Sci. USSR, 260:4 (1981), 790–794 (in Russian) | MR | Zbl
[62] I. A. Kipriyanov, L. A. Ivanov, “Derivation of fundamental solutions for homogeneous equations with singularities with respect to multiple variables”, Proc. S. L. Sobolev Semin., 1983, no. 1, 55–77 (in Russian) | MR | Zbl
[63] I. A. Kipriyanov, L. A. Ivanov, “Cauchy problem for the Euler–Poisson–Darboux equation in homogeneous symmetric Riemann space. I”, Proc. Math. Inst. Russ. Acad. Sci., 170, 1984, 139–147 (in Russian) | Zbl
[64] I. A. Kipriyanov, L. A. Ivanov, “Cauchy problem for the Euler–Poisson–Darboux equation in symmetric space”, Math. Digest, 124:1 (1984), 45–55 (in Russian) | MR
[65] I. A. Kipriyanov, L. A. Ivanov, “Reisz potentials in Lorentz spaces”, Math. Digest, 130:4 (1986), 465–474 (in Russian) | Zbl
[66] I. A. Kipriyanov, L. A. Ivanov, “To the theory of Reisz potentials in Lorentz spaces”, Proc. Math. Inst. Russ. Acad. Sci., 180, 1987, 134–135 (in Russian)
[67] I. A. Kipriyanov, L. A. Ivanov, “The D'Alambert representation and energy equipartition”, Differ. Equ., 26:3 (1990), 458–464 (in Russian) | MR | Zbl
[68] I. A. Kipriyanov, V. V. Katrakhov, “On a class of multidimensional singular pseudodifferential operators”, Math. Digest, 104:1 (1977), 49–68 (in Russian) | MR | Zbl
[69] I. A. Kipriyanov, V. V. Katrakhov, “Boundary–value problem for elliptic equations of the second order with singularities at isolated boundary points”, Rep. Acad. Sci. USSR, 276:2 (1984), 274–276 (in Russian) | MR | Zbl
[70] I. A. Kipriyanov, V. V. Katrakhov, On a singular elliptic boundary-value problem at the sphere domain, Preprint IPM DVO RAN, 1989 (in Russian)
[71] I. A. Kipriyanov, V. V. Katrakhov, Singular boundary-value problems for some elliptic higher order equations, Preprint IPM DVO RAN, 1989 (in Russian)
[72] I. A. Kipriyanov, V. V. Katrakhov, “On a boundary-value problem for elliptic equations of the second order at the sphere domain”, Rep. Acad. Sci. USSR, 313:3 (1990), 545–548 (in Russian) | MR | Zbl
[73] I. A. Kipriyanov, M. I. Klyuchantsev, “On Poisson kernels for boundary-value problems with Bessel differential operator”, Partial Differential Equations, M., 1970, 119–134 (in Russian) | Zbl
[74] I. A. Kipriyanov, V. I. Kononenko, “On fundamental solutions for partial differential equations with Bessel differential operator”, Rep. Acad. Sci. USSR, 170:2 (1966), 261–264 (in Russian) | Zbl
[75] I. A. Kipriyanov, V. I. Kononenko, “Fundamental solutions for $B$-elliptic equations”, Differ. Equ., 3:1 (1967), 114–129 (in Russian) | MR | Zbl
[76] I. A. Kipriyanov, V. I. Kononenko, “On fundamental solutions for some singular partial differential equations”, Differ. Equ., 5:8 (1969), 1470–1483 (in Russian) | Zbl
[77] I. A. Kipriyanov, A. A. Kulikov, “Fundamental solutions for $B$-hypoelliptic equations”, Differ. Equ., 27:8 (1991), 1387–1395 (in Russian) | MR | Zbl
[78] A. Kolmogorov N, S. V. Fomin, Elements of Function Theory and Functional Analysis, Nauka, M., 1981 (in Russian)
[79] D. P. Kostomarov, Cauchy Problems for Ultrahyperbolic Equations, Nauka, M., 2003 (in Russian)
[80] V. V. Kravchenko, E. L. Shishkina, S. N. Torba, “On presentation as a series for integral kernels of transmutation operators for perturbed Bessel equations”, Math. Notes, 104:4 (2018), 552–570 (in Russian) | DOI | MR | Zbl
[81] A. Kratzer, W. Franz, Transcendental Functions, IL, M., 1963 (in Russian)
[82] L. D. Kudryavtsev, “Direct and inverse embedding theorems. Applications to variational method of solution of elliptic equations”, Proc. Math. Inst. Russ. Acad. Sci., 55, 1959, 3–182 (in Russian)
[83] A. G. Kuz'min, Nonclassical Equations of Mixed Type and Their Applications in Gas Dynamics, LGU, L., 1990 (in Russian)
[84] R. Courant, Partial Differential Equations, Mir, M., 1979 (Russian translation)
[85] R. Courant, D. Hilbert, Methods of mathematical physics, v. 1, GITTL, M.–L., 1933 (Russian translation)
[86] R. Kurant, D. Gil'bert, Methods of mathematical physics, v. 2, GITTL, M.–L., 1945 (Russian translation)
[87] B. M. Levitan, “Some questions of the theory of almost periodic functions. I”, Progr. Math. Sci., 2:21 (1947), 133–192 (in Russian) | Zbl
[88] B. M. Levitan, “Some questions of the theory of almost periodic function. II”, Progr. Math. Sci., 2:22 (1947), 174–214 (in Russian)
[89] B. M. Levitan, “Application of operators of generalized translation to second-order linear differential equations”, Progr. Math. Sci., 4:29 (1949), 3–112 (in Russian) | Zbl
[90] B. M. Levitan, “Expansions in Bessel functions into series and Fourier integrals”, Progr. Math. Sci., 6:2 (1951), 102–143 (in Russian) | MR | Zbl
[91] P. I. Lizorkin, “Anisotropic Bessel potentials. Embedding theorems for the Sobolev space $L_p(r_1,\ldots,r_n)$ with fractional derivatives”, Rep. Acad. Sci. USSR, 170:3 (1966), 508–511 (in Russian) | Zbl
[92] P. I. Lizorkin, “Behavior of functions from Liouville classes at infinity. On Riesz potentials of arbitrary order”, Math. Inst. Russ. Acad. Sci., 150, 1979, 174–197 (in Russian) | Zbl
[93] P. I. Lizorkin, S. M. Nikol'skiy, “Coercive properties of an elliptic equation with strong degeneration (the case of generalized solutions)”, Rep. Acad. Sci. USSR, 259:1 (1981), 28–30 (in Russian) | MR | Zbl
[94] P. I. Lizorkin, S. M. Nikol'skiy, “An elliptic equation with degeneration. Variational approach”, Rep. Acad. Sci. USSR, 257:1 (1981), 42–45 (in Russian) | MR | Zbl
[95] P. I. Lizorkin, S. M. Nikol'skiy, “An elliptic equation with degeneration. Differential properties of solutions”, Rep. Acad. Sci. USSR, 257:2 (1981), 278–282 (in Russian) | MR | Zbl
[96] L. N. Lyakhov, “On one class of hypersingular integrals”, Rep. Acad. Sci. USSR, 315:2 (1990), 291–296 (in Russian) | Zbl
[97] L. N. Lyakhov, “Inversion of $B$-potentials”, Rep. Acad. Sci. USSR, 321:3 (1991), 466–469 (in Russian) | Zbl
[98] L. N. Lyakhov, “Spaces of Riesz $B$-potentials”, Rep. Acad. Sci. USSR, 334:3 (1994), 278–280 (in Russian) | Zbl
[99] L. N. Lyakhov, “Description of the Riesz $B$-potentials space $U^\gamma_\alpha(L_p^\gamma)$ by means of $B$-derivatives of order $2[\alpha/2]$”, Rep. Russ. Acad. Sci., 341:2 (1995), 161–165 (in Russian) | MR | Zbl
[100] L. N. Lyakhov, “On the symbol of an integral operator of $B$-potential type with single characteristic”, Rep. Russ. Acad. Sci., 351:2 (1996), 164–168 (in Russian) | MR | Zbl
[101] L. N. Lyakhov, Spherical Weight Functions and Riesz Potentials Generated by Generalized Translation, VGTA, Voronezh, 1997 (in Russian)
[102] L. N. Lyakhov, “Multipliers of mixed Fourier–Bessel transformation”, Proc. Math. Inst. Russ. Acad. Sci., 214, 1997, 234–249 (in Russian) | Zbl
[103] L. N. Lyakhov, $B$-Hypersingular Integrals and Their Applications to Description of the Kipriyanov Classes of Functions and to Integral Equations with $B$-Potential Kernels, LGPU, Lipetsk, 2007 (in Russian)
[104] L. N. Lyakhov, I. P. Polovinkin, E. L. Shishkina, “On one I. A. Kipriyanov's problem for a singular ultrahyperbolic equation”, Differ. Equ., 50:4 (2014), 516–528 (in Russian) | DOI | MR | Zbl
[105] L. N. Lyakhov, I. P. Polovinkin, E. L. Shishkina, “Formulas of solution of the Cauchy problem for a singular wave equation with Bessel operator with respect to time”, Rep. Russ. Acad. Sci., 459:5 (2014), 533–538 (in Russian) | DOI | Zbl
[106] L. N. Lyakhov, E. L. Shishkina, “Generalized Riesz $B$-potentials of mixed type”, Rep. Russ. Acad. Sci., 406:3 (2006), 303–307 (in Russian) | MR | Zbl
[107] L. N. Lyakhov, E. L. Shishkina, “General $B$-hypersingular operators with homogeneous characteristic”, Rep. Russ. Acad. Sci., 412:2 (2007), 162–166 (in Russian) | Zbl
[108] L. N. Lyakhov, E. L. Shishkina, “Inversion of general Riesz $B$-potentials with homogeneous characteristic in weighted spaces”, Rep. Russ. Acad. Sci., 426:4 (2009), 443–447 (in Russian) | Zbl
[109] V. A. Marchenko, “Generalized translation, transmutation operators and inverse problems”, Mathematical Events of KhKhth Century, Fazis, M., 2003, 209–226 (in Russian)
[110] M. I. Matiychuk, Parabolic Singular Boundary-Value Problems, Univ. Math. Nat. Acad. Sci. of Ukraine, Kiev, 1999 (in Ukrainian)
[111] M. I. Matiychuk, Parabolic and Elliptic Boundary-Value Problems with Singularities, Prut, Chernivtsi, 2003 (in Ukrainian)
[112] R. von Mises, Mathematical Theory of Compressible Fluid Flow, IL, M., 1961 (Russian translation)
[113] A. B. Muravnik, “Functional Differential Parabolic Equations: Integral Transformations and Qualitative Properties of the Cauchy Problem Solutions”, Contemp. Math. Fundam. Directions, 52, 2014, 3–141 (in Russian)
[114] S. M. Nikol'skiy, Approximation of Multivariate Functions and Embedding Theorems, Nauka, M., 1977 (in Russian)
[115] S. M. Nikol'skiy, P. I. Lizorkin, “On some inequalities for functions from weighted classes and boundary-value problems with strong degeneracy at the boundary”, Rep. Acad. Sci. USSR, 159:3 (1964), 512–515 (in Russian)
[116] V. A. Nogin, E. V. Sukhinin, Obrashchenie i opisanie giperbolicheskikh potentsialov s $L_p$-plotnostyami, Dep. v VINITI, No 2512-92, M., 1992 (in Russian) | Zbl
[117] V. A. Nogin, E. V. Sukhinin, “Inversion and description of hyperbolic potentials with $L_p$-densities”, Rep. Russ. Acad. Sci., 329:5 (1993), 550–552 (in Russian) | Zbl
[118] V. A. Nogin, K. S. Shevchenko, “Inversion of some Riesz potentials with oscillating characteristics in the nonelliptic case”, Bull. Higher Edu. Inst. Ser. Math., 1999, no. 10, 77–80 (in Russian) | Zbl
[119] M. N. Olevskiy, “Solution of the Dirichlet problem related to equation $\Delta u+\dfrac{p}{x_n}\dfrac{\partial u}{x_n}=\rho$ in a semishperic domain”, Rep. Acad. Sci. USSR, 64:6 (1949), 767–770 (in Russian)
[120] S. S. Platonov, “Generalized Bessel translations and some problems of function approximation theory in the $L_2$ metric. 1”, Proc. Petr. State Univ. Ser. Math., 7 (2000), 70–82 (in Russian)
[121] S. S. Platonov, “Generalized Bessel translations and some problems of function approximation theory in the $L_2$ metric. 2”, Proc. Petr. State Univ. Ser. Math., 8 (2001), 20–36 (in Russian) | Zbl
[122] S. S. Platonov, “Bessel harmonic analysis and approximation of functions on a semiaxis”, Bull. Russ. Acad. Sci. Ser. Math., 71:5 (2007), 149–196 (in Russian) | DOI | MR | Zbl
[123] S. S. Platonov, “Generalized Bessel translations and some inverse theorems of the function approximations theory on a semiaxis”, Proc. Petr. State Univ. Ser. Math., 14 (2007), 44–57 (in Russian)
[124] S. S. Platonov, “Generalized Bessel translations and some problems of the function approximations theory on a semiaxis”, Sib. mat. zh., 50:1 (2009), 154–174 (in Russian) | MR | Zbl
[125] I. P. Polovinkin, Mean-value theorems for wave equations and Euler–Poisson–Darboux equations, PhD Thesis, Voronezh, 1992 (in Russian)
[126] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, v. 1, Elementary Functions, Nauka, M., 1981 (in Russian) | MR
[127] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, v. 2, Special Functions, Nauka, M., 1983 (in Russian) | MR
[128] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, v. 3, Special Functions. Additional Chapters, Nauka, M., 2003 (in Russian) | MR
[129] S. P. Pul'kin, “Some boundary-value problems for the equation $u_{xx}\pm u_{yy}+\dfrac{p}{x}u_x$”, Sci. Notes Kuibyshev Ped. Univ., 21 (1958), 3–54 (in Russian)
[130] S. P. Pul'kin, Selected Works, Univers Grupp, Samara, 2007 (in Russian)
[131] B. Riemann, “The propagation of planar air waves of finite amplitude”, Works, OGIZ, M.–L., 1948, 376–395 (Russian translation)
[132] K. B. Sabitov, R. R. Il'yasov, “Solution of the Tricomi problem for a mixed-type equation with a singular coefficient by a spectral method”, Bull. Higher Edu. Inst. Ser. Math., 2004, no. 2, 64–71 (in Russian) | MR | Zbl
[133] S. G. Samko, “On main functions vanishing in a given set and on division by functions”, Math. Notes, 21:5 (1977), 677–689 (in Russian) | MR | Zbl
[134] S. G. Samko, “On density of Lizorkin-type spaces $\Phi_V$ in $L_p(R_n)$”, Math. Notes, 31:6 (1982), 855–865 (in Russian) | MR | Zbl
[135] S. G. Samko, “On density of Lizorkin-type spaces $\Phi_V$ in spaces $L_p(R_n)$ with mixed metric”, Rep. Russ. Acad. Sci., 319:3 (1991), 567–569 (in Russian) | Zbl
[136] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and Derivatives of Fractional Order and Some Their Applications, Nauka i Tekhnika, Minsk, 1987 (in Russian)
[137] S. M. Sitnik, On unitary transmutations, Dep. VINITI, No 7770-V86, VGU, Voronezh, 1986 (in Russian)
[138] S. M. Sitnik, On the decay rate of solutions of some elliptic and ultraelliptic equations, Dep. VINITI, No 7771-B86, VGU, Voronezh, 1986 (in Russian)
[139] S. M. Sitnik, Transmutations for the Bessel differential expression, Dep. VINITI, No 535-B87, VGU, Voronezh, 1986 (in Russian)
[140] S. M. Sitnik, “On one pair of transmutations”, Boundary-Value Problems for Nonclassical Equations of Mathematical Physics, Novosibirsk, 1987, 168–173 (in Russian) | MR
[141] S. M. Sitnik, “On the decay rate of solutions of some elliptic and ultraelliptic equations”, Differ. Equ., 24:3 (1988), 538–539 (in Russian) | MR | Zbl
[142] S. M. Sitnik, “Transmutations for singular differential equations with the Bessel operator”, Boundary-Value Problems for Nonclassical Equations of Mathematical Physics, Novosibirsk, 1989, 179–185 (in Russian) | MR
[143] S. M. Sitnik, Unitarity and boundedness of the Buschman–Erdélyi operators of zero order of smoothness, Preprint Inst. Automat. Control Proc. RAS, Vladivostok, 1990 (in Russian)
[144] S. M. Sitnik, “Factorization and estimates of norms of the Buschman–Erdélyi operators in weighted Lebesgue spaces”, Rep. Acad. Sci. USSR, 320:6 (1991), 1326–1330 (in Russian) | Zbl
[145] S. M. Sitnik preprint Transmutation and Jost representation for an equation with singular potential, Preprint Inst. Automat. Control Proc. RAS, Vladivostok, 1993 (in Russian)
[146] S. M. Sitnik, Inequalities for full elliptic Legendre integrals, Preprint Inst. Automat. Control Proc. RAS, Vladivostok, 1994 (in Russian)
[147] S. M. Sitnik, “Inequalities for Bessel functions”, Rep. Russ. Acad. Sci., 340:1 (1995), 29–32 (in Russian) | MR | Zbl
[148] S. M. Sitnik, “Generalization of the Cauchy–Bunyakovskii inequalities by the means method and their applications”, Chernozem. Digest Sci. Study. Ser. Fundam. Math., 2005, no. 1, 3–42 (in Russian)
[149] S. M. Sitnik, “The method of factorization of transmutations in the theory of differential equations”, Bull. Samar. State Univ. Ser. Nat. Sci., 2008, no. 8/1(67), 237–248 (in Russian)
[150] S. M. Sitnik, “Transmutations and their applications”, Studies in Contemporary Analysis and Mathematical Modelling, Vladikavkaz. Nauch. Tsentr RAN i RSO-A, Vladikavkaz, 2008, 226–293 (in Russian)
[151] S. M. Sitnik, “Refinements and generalizations of classic inequalities”, Math. Anal., Totals Sci. Southern Fed. Distr. Ser. Math. Forum, 3, Yuzhnyy Mat. Inst. VNTS RAN i RSO Alaniya, Vladikavkaz, 2009, 221–266 (in Russian)
[152] S. M. Sitnik, “On integral representation of solutions of one differential equation with singularities in coefficietns”, Vladikavkaz. Math. J., 12:4 (2010), 73–78 (in Russian) | MR | Zbl
[153] S. M. Sitnik, “Transmutation of special form for a differential operator with singular at zero potential”, Nonclassical Equations of Mathematical Physics, Inst. Mat. im. S. L. Soboleva SO RAN, Novosibirsk, 2010, 264–278 (in Russian)
[154] S. M. Sitnik, “On explicit realizations of fractional powers of the Bessel differential operator and their applications to differential equations”, Rep. Adyg. (Cherkess.) Int. Acad. Sci., 12:2 (2010), 69–75 (in Russian) | MR
[155] S. M. Sitnik, “Survey of basic properties of Buschman–Erdélyi transmutations”, Chelyabinsk Phys. Math. J., 1:4 (2016), 63–93 (in Russian) | MR
[156] S. M. Sitnik, Application of Buschman–Erdélyi transmutations and their generalizations in the theory of differential equations with singularities in coefficients, Doctoral Thesis, Voronezh, 2016 (in Russian)
[157] S. M. Sitnik, D. B. Karp, Composition formulas for integral transforms with Bessel functions in kernels, Preprint Inst. Automat. Control Proc. RAS, Vladivostok, 1993 (in Russian)
[158] S. M. Sitnik, D. B. Karp, Fractional Hankel transform and its applications in mathematical physics, Preprint Inst. Automat. Control Proc. RAS, Vladivostok, 1994 (in Russian)
[159] S. M. Sitnik, G. V. Lyakhovetskiy, Composition formulas for Buschman–Erdélyi transmutations, Preprint Inst. Automat. Control Proc. RAS, Vladivostok, 1991 (in Russian)
[160] S. M. Sitnik, G. V. Lyakhovetskiy, Vekua–Erdélyi–Lowndes transmutations, Preprint Inst. Automat. Control Proc. RAS, Vladivostok, 1994 (in Russian)
[161] S. M. Sitnik, E. L. Shishkina, “On one identity for an iterated weighted spherical mean and its applications”, Siberian Electron Math. Bull., 13 (2016), 849–860 (in Russian) | Zbl
[162] S. M. Sitnik, E. L. Shishkina, The Transmutation Method for Differential Equations with Bessel Operators, Fizmatlit, M., 2018 (in Russian)
[163] S. M. Sitnik, E. L. Shishkina, “On fractional powers of the Bessel operator on a semiaxis”, Siberian Electron Math. Bull., 15 (2018), 1–10 (in Russian) | MR | Zbl
[164] A. L. Skubachevskiy, “Nonclassical boundary-value problems. I”, Contemp. Math. Fundam. Directions, 26, 2007, 3–132 (in Russian)
[165] A. L. Skubachevskiy, “Nonclassical boundary-value problems. II”, Contemp. Math. Fundam. Directions, 33, 2009, 3–179 (in Russian)
[166] M. M. Smirnov, Degenerating Hyperbolic Equations, Vysheysh. shkola, Minsk, 1977 (in Russian)
[167] V. V. Stashevskaya, “The transmutation method”, Rep. Acad. Sci. USSR, 113:3 (1953), 409–412 (in Russian) | MR
[168] V. V. Stashevskaya, “On an inverse problem of spectral analysis for differential operator with singularity at zero”, Sci. Notes Kharkov Math. Soc., 1957, no. 5, 49–86 (in Russian)
[169] E. Stein, Singular Integrals and Differentiability Properties of Functions, Mir, M., 1973 (in Russian)
[170] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Mir, M., 1974 (Russian translation)
[171] S. A. Tersenov, “Introduction to Theory of Equations Degenerating at the Boundary”, NGU, 1973, Novosibirsk (in Russian)
[172] R. S. Khayrullin, “To the theory of the Euler–Poisson–Darboux equation”, Bull. Higher Edu. Inst. Ser. Math., 1993, no. 11, 69–76 (in Russian) | MR | Zbl
[173] Khe Kan Cher, “Mixed problem for generalized Euler–Poisson–Darboux equation in exceptional case”, Math. Notes, 40:1 (1986), 87–92 (in Russian) | MR
[174] Khe Kan Cher, “On explicit formulas for solutions of the Darboux and Cauchy–Goursat problems for degenerating hyperbolic equation”, Siberian Math. J., 40:3 (1999), 710–717 (in Russian) | MR | Zbl
[175] L. Hörmander, The Analysis of Linear Partial Differential Operators, v. I, Distribution Theory and Fourier Analysis, Mir, M., 1986 (Russian translation)
[176] G. L. Chernyshev, On the Cauchy problem with singular hyperbolic operator, Abstract of PhD Thesis, VGU, Voronezh, 1973 (in Russian)
[177] E. L. Shishkina, “Generalized weight function $r^\gamma$”, Bull. Voronezh State Univ. Ser. Phys. Math., 2006, no. 1, 215–221 (in Russian) | Zbl
[178] E. L. Shishkina, “An identity for iterated weighted spherical means generated by generalized shift”, Proc. LXVI Sci. Conf. “Gertsenovskie chteniya-2013”, RGPU im. A. I. Gertsena, Saint-Petersburg, 2013, 143–145 (in Russian)
[179] E. L. Shishkina, “Integral representation of kernel of the operator approximating the inverse operator to the hyperbolic Riesz $B$-potential”, Bull. Tambov Univ. Ser. Nat. Tech. Sci., 2016, no. 2, 450–458 (in Russian)
[180] E. L. Shishkina, “On properties of one averaging kernel in a weighted Lebesgue class”, Sci. Bull. Belgorod Univ. Ser. Math. Phys., 42:6 (2016), 12–19 (in Russian)
[181] E. L. Shishkina, “Weighted generalized functions corresponding to quadratic form with complex coefficients”, Chelyabinsk Phys. Math. J., 2:1 (2017), 88–98 (in Russian) | MR
[182] E. L. Shishkina, “Fractional Euler–Poisson–Darboux equation and stochastic walks”, Theory Probab. Appl., 62:4, Abstr. Second Int. Conf. on Stoch. Methods (2017), 837–838 (in Russian)
[183] E. L. Shishkina, Integral transforms composition method for singular differential equations with Bessel operator and its fractional powers, Doctoral Thesis, M., 2019 (in Russian)
[184] L. Asgeirsson, “Uber eine Mittelwertseigenschaft von Losungen homogener linearer partieller Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten”, Math. Ann, 1937, 321–346 | DOI | MR
[185] B. B. Baker, E. T. Copson, The Mathematical Theory of Huygens' Principle, Oxford University Press, New York, 1939 | MR
[186] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, World Scientific etc., Jersey–London–Singapore, 2012 | MR | Zbl
[187] F. W. Bessel, “Untersuchung des Teils der planetarischen St\:orungen, welcher aus der Bewegung der Sonne entsteht”, Abhandlungen der Berliner Akademie, 1824, 1–52
[188] D. W. Bresters, “On the equation of Euler–Poisson–Darboux”, SIAM J. Math. Anal., 4:1 (1973), 31–41 | DOI | MR | Zbl
[189] D. W. Bresters, “On a generalized Euler–Poisson–Darboux equation”, SIAM J. Math. Anal., 9:5 (1978), 924–934 | DOI | MR | Zbl
[190] H. Campos, V. V. Kravchenko, S. M. Torba, “Transmutations, $L$-bases and complete families of solutions of the stationary Schrödinger equation in the plane”, J. Math. Anal. Appl., 389:2 (2012), 1222–1238 | DOI | MR | Zbl
[191] R. W. Carroll, Transmutation and operator differential equations, North Holland, Amsterdam–New York–Oxford, 1979 | MR | Zbl
[192] R. W. Carroll, R. E. Showalter, Singular and degenerate Cauchy problems, Academic Press, N. Y., 1976 | MR
[193] R. Castillo-Pérez, V. V. Kravchenko, S. M. Torba, “Spectral parameter power series for perturbed Bessel equations”, Appl. Math. Comput., 220 (2013), 676–694 | MR | Zbl
[194] E. T. Copson, “Some applications of Marcel Riesz's integrals of fractional order”, Proc. Roy. Soc. Edinburgh Sect. A, 61 (1943), 260–272 | MR | Zbl
[195] W. Craig, S. Weinstein, “On determinism and well-posedness in multiple time dimensions”, Proc. R. Soc. Lond. Ser. A. Math. Phys. Eng. Sci., 465:2110 (2009), 3023–3046 | DOI | MR | Zbl
[196] G. Darboux, Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, v. 2, Gauthier-Villars, Paris, 1915 | MR
[197] J. Delsarte, “Sur une extension de la formule de Taylor”, J. Math. Pures Appl., 17 (1938), 217–230
[198] J. Delsarte, “Une extension nouvelle de la theorie des fonctions presque-periodiques de Bohr”, Acta Math., 69 (1938), 259–317 | DOI | MR
[199] J. Delsarte, “Hypergroupes et operateurs de permutation et de transmutation”, Colloques Internat. Centre Nat. Rech. Sci., 71 (1956), 29–45 | MR | Zbl
[200] J. Delsarte, J. L. Lions, “Transmutations d'operateurs differentiels dans le domaine complexe”, C. R. Acad. Sci. Paris, 244 (1957), 832–834 | MR | Zbl
[201] I. Dimovski, “Foundations of operational calculi for the Bessel-type differential operators”, Serdica, 1:1 (1975), 51–63 | MR
[202] I. Dimovski, V. Kiryakova, “Transmutations, convolutions and fractional powers of Bessel-type operators via Meijer's G-function”, Proc. Int. Conf. Complex Anal. and Appl. (Varna, 1983), Sofia, 1985, 45–66 | MR
[203] I. Dimovski, V. Kiryakova, “The Obrechkoff integral transform: properties and relation to a generalized fractional calculus”, Numer. Funct. Anal. Optim., 21:1-2 (2007), 121–144 | MR
[204] S. Elouadih, R. Daher, “Generalization of Titchmarsh's theorem for the Dunkl transform in the space $L^p(\mathbb{R}^d,\omega_l(x)dx)$”, Int. J. Math. Model. Comput., 6:4 (2016), 261–267 | MR
[205] L. Euler, “Tentamen de sono campanarum”, Novi Comm. Acad. Petrop, X (1764), 261
[206] L. Euler, “Institutiones calculi integralis”, Opera Omnia, 1:13 (1914), 212–230
[207] H. Exton, “On the system of partial differential equations associated with Appell's function $F_4$”, J. Phys. A. Math. Gen., 28 (1995), 631–641 | DOI | MR | Zbl
[208] A. Fitouhi, I. Jebabli, E. Shishkina, S. M. Sitnik, “Applications of integral transforms composition method to wave-type singular differential equations and index shift transmutations”, Electron. J. Differ. Equ., 2018:130 (2018), 1–27 | MR
[209] J. Fourier, Théorie analytique de la chaleur, Firmin Didot, Paris, 1822 | MR
[210] D. N. Fox, “The solution and Huygens' principle for a singular Cauchy problem”, J. Math. Mech., 8 (1959), 197–219 | MR | Zbl
[211] A. D. Gadjiev, V. S. Guliyev, A. Serbetci, E. V. Guliyev, “The Stein–Weiss type inequalities for the $B$-Riesz potentials”, J. Math. Inequal., 5:1 (2011), 87–106 | DOI | MR | Zbl
[212] V. S. Guliev, “Sobolev theorems for $B$-Riesz potentials”, Dokl. Math., 57:1 (1998), 72–73 | MR | Zbl
[213] V. S. Guliev, “Some properties of the anisotropic Riesz–Bessel potential”, Anal. Math., 26:2 (2000), 99–118 | DOI | MR | Zbl
[214] V. S. Guliev, “On maximal function and fractional integral, associated with the Bessel differential operator”, Math. Inequal. Appl., 6:2 (2003), 317–330 | MR | Zbl
[215] V. S. Guliev, “Weighted inequality for fractional maximal functions and fractional integrals, associated with the Laplace–Bessel differential operator”, Trans. Natl. Acad. Sci. Azerb. Ser. Phys. Tech. Math. Sci., 26:1 (2006), 71–80 | MR
[216] V. S. Guliev, J. J. Hasanov, “Sobolev–Morrey type inequality for Riesz potentials, associated with the Laplace–Bessel differential operator”, Fract. Calc. Appl. Anal., 9:1 (2006), 17–32 | MR
[217] V. S. Guliev, A. Miloud, “On maximal function on the Laguerre hypergroup”, Fract. Calc. Appl. Anal., 9:3 (2006), 1–12 | MR
[218] M. E. Hamma, R. Daher, “Estimate of $K$-functionals and modulus of smoothness constructed by generalized spherical mean operator”, Proc. Indian Acad. Sci. Math. Sci, 124:2 (2014), 235–242 | DOI | MR
[219] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Academic Press, Orlando etc., 1984 | MR | Zbl
[220] L. Hörmander, The analysis of linear partial differential operators, v. I-II, Springer, Berlin, 1983 | MR
[221] E. M. Jager, Applications of distributions in mathematical physics, Mathematisch Centrum, Amsterdam, 1964 | MR | Zbl
[222] A. John, “The Ultrahyperbolic differential equation with four independent variables”, Duke Math. J., 4:2 (1938), 300–322 | DOI | MR
[223] S. T. Karimov, “Multidimensional generalized Erdélyi–Kober operator and its application to solving Cauchy problems for differential equations with singular coefficients”, Fract. Calc. Appl. Anal., 18:4 (2015), 845–861 | DOI | MR | Zbl
[224] S. T. Karimov, “On some generalizations of properties of the Lowndes operator and their applications to partial differential equations of high order”, Filomat, 32:3 (2018), 873–883 | DOI | MR
[225] I. Karoui, On the Bessel–Wright harmonic analysis, PhD Thesis, Université de Carthage, 2017
[226] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier etc., Amsterdam, 2006 | MR | Zbl
[227] V. Kiryakova, “Applications of the generalized Poisson transformation for solving hyper-Bessel differential equations”, Godishnik VUZ. Appl. Math., 22:4 (1986), 129–140 | MR
[228] V. Kiryakova, Generalized fractional calculus and applications, Longman, Harlow, 1994 | MR | Zbl
[229] V. Kiryakova, “Transmutation method for solving hyper-Bessel differential equations based on the Poisson–Dimovski transformation”, Fract. Calc. Appl. Anal., 11:3 (2008), 299–316 | MR | Zbl
[230] V. Kiryakova, B. Al-Saqabi, “Explicit solutions to hyper-Bessel integral equations of second kind”, Comput. Math. Appl., 37 (1999), 75–86 | DOI | MR | Zbl
[231] V. V. Kravchenko, Applied pseudoanalytic function theory, Birkhäuser, Basel, 2009 | MR | Zbl
[232] V. V. Kravchenko, “Construction of a transmutation for the one-dimensional Schrödinger operator and a representation for solutions”, Appl. Math. Comput., 328 (2018), 75–81 | DOI | MR | Zbl
[233] V. V. Kravchenko, L. J. Navarro, S. M. Torba, “Representation of solutions to the one-dimensional Schrödinger equation in terms of Neumann series of Bessel functions”, Appl. Math. Comput., 314:1 (2017), 173–192 | MR | Zbl
[234] V. V. Kravchenko, J. A. Otero, S. M. Torba, “Analytic approximation of solutions of parabolic partial differential equations with variable coefficients”, Adv. Math. Phys., 2017 (2017), 2947275 | DOI | MR | Zbl
[235] V. V. Kravchenko, S. M. Torba, “Transmutations for Darboux transformed operators with applications”, J. Phys. A. Math. Theor., 45:7 (2012), 075201 | DOI | MR | Zbl
[236] V. V. Kravchenko, S. M. Torba, “Analytic approximation of transmutation operators and applications to highly accurate solution of spectral problems”, J. Comput. Appl. Math., 275 (2015), 1–26 | DOI | MR | Zbl
[237] V. V. Kravchenko, S. M. Torba, “Construction of transmutation operators and hyperbolic pseudoanalytic functions”, Complex Anal. Oper. Theory, 9:2 (2015), 379–429 | DOI | MR | Zbl
[238] V. V. Kravchenko, S. M. Torba, “Asymptotics with respect to the spectral parameter and Neumann series of Bessel functions for solutions of the one-dimensional Schrödinger equation”, J. Math. Phys., 58:12 (2017), 122107 | DOI | MR | Zbl
[239] Kravchenko V. V., Torba S. M., Khmelnytskaya K. V., “Transmutation operators: construction and applications”, Proc. 17th Int. Conf. on Comput. and Math. Methods in Sci. and Engin. (Cadiz, Andalucia, España, Jul. 4–8, 2017), 1198–1206 | MR
[240] V. V. Kravchenko, S. M. Torba, “A Neumann series of Bessel functions representation for solutions of Sturm–Liouville equations”, Calcolo, 55:1 (2018), 11 | DOI | MR | Zbl
[241] V. V. Kravchenko, S. M. Torba, R. Castillo-Pérez, “A Neumann series of Bessel functions representation for solutions of perturbed Bessel equations”, Appl. Anal., 97:5 (2018), 677–704 | DOI | MR | Zbl
[242] J. L. Lagrange, “Sur le problème de Képler”, Mém. l'Académie R. Sci. Bell. Lett. Berlin, XXV (1771), 113–138
[243] L. N. Lyakhov, M. V. Polovinkina, E. L. Shishkina, “Accompanying distributions of singular differential operators”, J. Math. Sci., 219:2 (2016), 184–189 | DOI | MR | Zbl
[244] L. N. Lyakhov, E. L. Shishkina, “Inversion of general Riesz $B$-potentials”, Proc. Int. Conf. Analytic methods of analysis and differential equations, AMADE 2012, Cambridge Scientific Publishers, Cottenham, 2013, 115–126
[245] L. N. Lyakhov, E. L. Shishkina, “Weighted mixed spherical means and singular ultrahyperbolic equation”, Analysis (Munich), 36:2 (2016), 65–70 | MR | Zbl
[246] J. L. McGregor, Generalized translation operators, PhD Thesis, California Institute of Technology, Pasadena, 1954 | MR
[247] A. B. Muravnik, “On weighted norm estimates for the mixed Fourier–Bessel transforms on non-negative functions”, Integral methods in science and engineering, v. 1, Analytic methods, Longman, Harlow, 119–123 | MR | Zbl
[248] A. B. Muravnik, “Fourier–Bessel transformation of measures and singular differential operators”, Paul Erdős and his mathematics, János Bolyai Math. Soc., Budapest, 1999, 182–184 | MR | Zbl
[249] D. I. Nikolayev, H. Schaeben, “Characteristics of the ultrahyperbolic differential equation governing pole density functions”, Inverse Problems, 15 (1999), 1603–1619 | DOI | MR | Zbl
[250] N. Obrechkoff, “On certain integral representation of real functions on the real semi-axis”, Izvestia Mat. Inst. Sofia, 3 (1958), 2–28 | MR
[251] M. D. Ortigueira, Fractional calculus for scientists and engineers, Springer, Dordrecht, 2011 | MR | Zbl
[252] O. G. Owens, “Uniqueness of solutions of ultrahyperbolic partial differential equations”, Am. J. Math., 69:1 (1947), 184–188 | DOI | MR | Zbl
[253] O. G. Owens, “An ultrahyperbolic equation with an integral condition”, Am. J. Math., 82:4 (1960), 799–811 | DOI | MR | Zbl
[254] S. D. Poisson, “Mémoire sur l'intégration des équations linéaires aux différences partielles”, J. Éc. Roy. Polytech. Ser. 1, 19:12 (1823), 215–248
[255] J. Radzikowski, “On the uniqueness of the limit problem for the ultrahyperbolic equation”, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys., 8:4 (1960), 203–207 | MR | Zbl
[256] M. Riesz, “Intégrale de Riemann-Liouville et solution invariantive du probléme de Cauchy pour l'équation de sondes”, Comptes Rendus du Congres International des Mathematiciens, 2 (1936), 44–45
[257] M. Riesz, “L'intégrale de Riemann–Liouville et le probleme de Cauchy”, Acta Math., 81:1-2 (1949), 1–223 | DOI | MR | Zbl
[258] B. Rubin, Fractional integrals and potentials, Addison Wesley Longman, Harlow, 1996 | MR | Zbl
[259] A. Sajǧlam, H. Yıldırım, M. Z. Sarıkaya, “On the product of the ultra-hyperbolic Bessel operator related to the elastic waves”, Selçuk J. Appl. Math., 10:1 (2009), 85–93 | MR
[260] M. Z. Sarıkaya, H. Yıldırım, Ö. Akin, “On generalized Riesz type potential with Lorentz distance”, Lobachevskii J. Math., 28 (2008), 24–31 | MR
[261] L. Schwartz, Théorie des distributions, Hermann, Paris, 1966 | MR
[262] E. L. Shishkina, “Inversion of integral of $B$-potential type with density from $\Phi_\gamma$”, J. Math. Sci., 160:1 (2009), 95–102 | DOI | MR | Zbl
[263] E. L. Shishkina, “On the boundedness of hyperbolic Riesz $B$-potential”, Lith. Math. J., 56:4 (2016), 540–551 | DOI | MR | Zbl
[264] E. L. Shishkina, “On weighted generalized functions associated with quadratic forms”, Probl. Anal. Issues Anal., 5:2 (2016), 52–68 | DOI | MR | Zbl
[265] E. L. Shishkina, “Inversion of the mixed Riesz hyperbolic $B$-potentials”, Int. J. Appl. Math., 30:6 (2017), 487–500 | DOI | MR
[266] E. L. Shishkina, “Generalized Euler–Poisson–Darboux equation and singular Klein–Gordon equation”, J. Phys. Conf. Ser., 973 (2018), 1–21 | DOI
[267] E. L. Shishkina, “Properties of mixed hyperbolic $B$-potential”, Progr. Fract. Differ. Appl., 4:2 (2018), 83–98 | DOI
[268] E. L. Shishkina, “Singular Cauchy problem for the general Euler–Poisson–Darboux equation”, Open Math. J., 16 (2018), 23–31 | DOI | MR | Zbl
[269] E. L. Shishkina, “Solution of the singular Cauchy problem for a general inhomogeneous Euler–Poisson–Darboux equation”, Carpathian J. Math., 34:2 (2018), 255–267 | MR
[270] E. L. Shishkina, S. Abbas, “Method of Riesz potentials applied to solution to nonhomogeneous singular wave equations”, Math. Notes SVFU, 25:3 (2018), 68–91 | Zbl
[271] E. L. Shishkina, M. Karabacak, “Singular Cauchy problem for generalized homogeneous Euler–Poisson–Darboux equation”, Math. Notes SVFU, 25:2 (2018), 85–96 | MR | Zbl
[272] E. L. Shishkina, S. M. Sitnik, “General form of the Euler–Poisson–Darboux equation and application of the transmutation method”, Electron. J. Differ. Equ., 177 (2017), 1–20 | MR
[273] E. L. Shishkina, S. M. Sitnik, “On fractional powers of Bessel operators”, J. Inequal. Spec. Funct., 8:1 (2017), 49–67 | MR
[274] S. M. Sitnik, Transmutations and applications: a survey, arXiv: 1012.3741 [math.CA]
[275] S. M. Sitnik, “A short survey of recent results on Buschman–Erdélyi transmutations”, J. Inequal. Spec. Funct., 8:1 (2017), 140–157 | MR
[276] S. M. Sitnik, “Buschman–Erdélyi transmutations and applications”, Abstr. 8th Int. Conf. «Transform Methods and Special Functions» (Bulgaria, Sofia, Aug. 27–31, 2017), Inst. Math. Inf. Bulg. Acad. Sci., 2017, 59
[277] H. M. Srivastava, P. W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood, Chichester, 1985 | MR | Zbl
[278] K. L. Stellmacher, “Eine Klasse Huygenscher Differentialgleichungen und ihre Integration”, Math. Ann., 130 (1955), 219–233 | DOI | MR | Zbl
[279] S. R. Umarov, Introduction to fractional and pseudo-differential equations with singular symbols, Springer, Cham, 2015 | MR | Zbl
[280] A. K. Urinov, S. T. Karimov, “Solution of the Cauchy problem for generalized Euler–Poisson–Darboux equation by the method of fractional integrals”, Progress in Partial Differential Equations, Springer, Heidelberg, 2013, 321–337 | MR | Zbl
[281] A. Weinstein, “Discontinuous integrals and generalized theory of potential”, Trans. Am. Math. Soc., 63:2 (1948), 342–354 | DOI | MR | Zbl
[282] A. Weinstein, “Generalized axially symmetric potential theory”, Bull. Am. Math. Soc., 59 (1953), 20–38 | DOI | MR | Zbl
[283] A. Weinstein, “On the wave equation and the equation of Euler–Poisson”, Proc. Symp. Appl. Math., v. V, Wave motion and vibration theory, McGraw-Hill, New York–Toronto–London, 1954, 137–147 | DOI | MR
[284] A. Weinstein, “The generalized radiation problem and the Euler–Poisson–Darboux equation”, Summa Brasil. Math., 3 (1955), 125–147 | MR
[285] A. Weinstein, “Spherical means in spaces of constant curvature”, Ann. Mat. Pura Appl. (4), 4:60 (1962), 87–91 | DOI | MR | Zbl
[286] A. Weinstein, “"Some applications of generalized axially symmetric potential theory to continuum mechanics”, Prilozheniya teorii funktsii v mekhanike sploshnykh sred, v. 2, Mekhanika zhidkosti i gaza, matematicheskie metody, Nauka, M., 1965, 440–453