Continuation of analytic and pluriharmonic functions in the given direction by the Chirka method: a~survey
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 83-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we provide a survey of results on analytic and plurisubharmonic continuations of functions that have this set of singularities along a fixed direction. We show the advantages of using the pluripotential theory and the Jacobi–Hartogs series for description of the singular set of such functions.
@article{CMFD_2019_65_1_a7,
     author = {A. Sadullaev},
     title = {Continuation of analytic and pluriharmonic functions in the given direction by the {Chirka} method: a~survey},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {65},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a7/}
}
TY  - JOUR
AU  - A. Sadullaev
TI  - Continuation of analytic and pluriharmonic functions in the given direction by the Chirka method: a~survey
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2019
SP  - 83
EP  - 94
VL  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a7/
LA  - ru
ID  - CMFD_2019_65_1_a7
ER  - 
%0 Journal Article
%A A. Sadullaev
%T Continuation of analytic and pluriharmonic functions in the given direction by the Chirka method: a~survey
%J Contemporary Mathematics. Fundamental Directions
%D 2019
%P 83-94
%V 65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a7/
%G ru
%F CMFD_2019_65_1_a7
A. Sadullaev. Continuation of analytic and pluriharmonic functions in the given direction by the Chirka method: a~survey. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 83-94. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a7/

[1] A. A. Atamuratov, “On meromorphic continuation along a fixed direction”, Math. Notes, 86:3 (2009), 323–327 (in Russian) | DOI | MR | Zbl

[2] A. A. Atamuratov, “Meromorphic continuation of functions along boundary sections”, Uzbek Mat. Zh., 2009, no. 1, 4–9 (in Russian) | MR

[3] A. A. Atamuratov, “Continuation of separately meromorphic functions defined on a part of the boundary”, Uzbek Mat. Zh., 2009, no. 3, 18–26 (in Russian) | MR

[4] A. A. Gonchar, “Local condition of one-valuedness of analytic functions”, Math. Digest, 89 (1972), 148–164 (in Russian) | Zbl

[5] A. A. Gonchar, “Local condition of one-valuedness of analytic functions of multiple arguments”, Math. Digest, 93 (1974), 296–313 (in Russian) | Zbl

[6] S. A. Imomkulov, “On holomorphic continuation of functions defined on a boundary pencil of complex lines”, Bull. Russ. Acad. Sci. Ser. Math., 69:2 (2005), 125–144 (in Russian) | DOI | MR | Zbl

[7] M. V. Kazaryan, “On holomorphic continuation of functions with special singularities to $\mathbb{C}^n$”, Rep. Acad. Sci. Armenian SSR, 76 (1983), 13–17 (in Russian) | Zbl

[8] M. V. Kazaryan, “Meromorphic continuation with respect to groups of arguments”, Math. Digest, 125:3 (1984), 384–397 (in Russian) | MR

[9] A. Sadullaev, “Rational approximations and pluripolar sets”, Math. Digest, 119:1 (1982), 96–118 (in Russian) | MR | Zbl

[10] A. Sadullaev, “Criteria of fast rational approximation in $\mathbb{C}^n$”, Math. Digest, 125:2 (1984), 269–279 (in Russian) | MR

[11] A. Sadullaev, “Plurisubharmonic functions”, Contemp. Probl. Math. Fundam. Directions, 8, 1985, 65–113 (in Russian) | MR

[12] A. Sadullaev, “On the plurisubharmonic continuation along fixed direction”, Math. Digest, 196 (2005), 145–156 (in Russian) | DOI | Zbl

[13] A. Sadullaev, “On analytic multifunctions”, Math. Notes, 83:5 (2008), 84–95 (in Russian) | DOI

[14] A. Sadullaev, Pluripotential Theory: Applications, Palmarium Akademic Publishing, Riga, 2012 (in Russian)

[15] A. Sadullaev, S. A. Imomkulov, “Continuation of pluriharmonic functions with discrete singularities on parallel sections”, Bull. Krasnoyarsk State Univ., 2004, no. 5/2, 3–6 (in Russian) | MR

[16] A. Sadullaev, S. A. Imomkulov, “Continuation of separately analytic functions defined on a part of the boundary”, Math. Notes, 79:2 (2006), 234–243 (in Russian) | DOI | Zbl

[17] A. Sadullaev, S. A. Imomkulov, “Continuation of holomorphic and pluriharmonic functions with fine singularities on parallel sections”, Proc. Math. Inst. Russ. Acad. Sci., 253, 2006, 158–174 (in Russian) | Zbl

[18] A. Sadullaev, E. M. Chirka, “On continuation of functions with polar singularities”, Math. Digest, 132:3 (1987), 383–390 (in Russian) | Zbl

[19] E. M. Chirka, “Expansion into series and rate of rational approximations for holomorphic functions with analytic singularities”, Math. Digest, 93:2 (1974), 314–324 (in Russian)

[20] Atamuratov A. A., Vaisova M. D., “On the meromorphic extension along the complex lines”, TWMS J. Pure Appl. Math., 2:1 (2011), 10–16 | MR | Zbl

[21] Chirka E. M., “On the removable singularities for meromorphic mappings”, Publ. Mat., 40 (1996), 229–232 | DOI | MR | Zbl

[22] Imomkulov S. A., Khujamov J. U., “On holomorphic continuation of functions along boundary sections”, Math. Bohem., 130:3 (2005), 309–322 | MR | Zbl

[23] Levenberg N., Słodkowski Z., “Pseudoconcave pluripolar sets in $\mathbb{C}^2$”, Math. Ann., 312 (1998), 429–443 | DOI | MR | Zbl

[24] Nishino T., “Sur les ensembles pseudo-concaves”, J. Math. Kyoto Univ., 1 (1962), 225–245 | DOI | MR | Zbl

[25] Oka K., “Note sur les familles de fonctions analytiques multiform etc.”, J. Sci. Hiroshima Univ., 4 (1934), 93–98 | DOI

[26] Rothstein W., “Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Functionen”, Math. Z., 53 (1950), 84–95 | DOI | MR | Zbl

[27] Sadullaev A., “Plurisubharmonic functions”, Several Complex Variables II, Springer, Berlin–Heidelberg, 1994, 56–106

[28] Sadullaev A., “On analytic multifunctions”, Math. Notes, 83 (2008), 652–656 | DOI | MR | Zbl

[29] Slodkowski Z., “Analytic set-valued functions and spectra”, Math. Ann., 256:3 (1981), 363–386 | DOI | MR | Zbl