Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2019_65_1_a0, author = {A. Artikbaev and S. S. Saitova}, title = {Interpretation of geometry on manifolds as a geometry in a space with projective metric}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {1--10}, publisher = {mathdoc}, volume = {65}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a0/} }
TY - JOUR AU - A. Artikbaev AU - S. S. Saitova TI - Interpretation of geometry on manifolds as a geometry in a space with projective metric JO - Contemporary Mathematics. Fundamental Directions PY - 2019 SP - 1 EP - 10 VL - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a0/ LA - ru ID - CMFD_2019_65_1_a0 ER -
%0 Journal Article %A A. Artikbaev %A S. S. Saitova %T Interpretation of geometry on manifolds as a geometry in a space with projective metric %J Contemporary Mathematics. Fundamental Directions %D 2019 %P 1-10 %V 65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a0/ %G ru %F CMFD_2019_65_1_a0
A. Artikbaev; S. S. Saitova. Interpretation of geometry on manifolds as a geometry in a space with projective metric. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 65 (2019) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/CMFD_2019_65_1_a0/
[1] A. Artykbaev, “Restoration of convex surfaces by outer curvature in the Galilei space”, Math. Digest, 19:2 (1982), 204–224 (in Russian) | MR
[2] L. A. Masal'tsev, “Nil-manifolds cannot be immersed as hypersurfaces in Euclidean spaces”, Math. Notes, 76:6 (2004), 868–873 (in Russian) | DOI | MR | Zbl
[3] B. A. Rozenfel'd, Non-Euclidean Spaces, Nauka, M., 1969 (in Russian)
[4] Scott P., “The geometries of 3-monifolds”, Bull. Lond. Math. Soc., 15:5 (1983), 401–487 | DOI | MR | Zbl