Relation between one-sided ball potentials
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 736-748

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we establish the relation between one-sided ball potentials by means of radially singular operators in a spherical layer. Moreover, we construct new Chern-type one-sided ball potentials.
@article{CMFD_2018_64_4_a8,
     author = {M. U. Yakhshiboev},
     title = {Relation between one-sided ball potentials},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {736--748},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a8/}
}
TY  - JOUR
AU  - M. U. Yakhshiboev
TI  - Relation between one-sided ball potentials
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 736
EP  - 748
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a8/
LA  - ru
ID  - CMFD_2018_64_4_a8
ER  - 
%0 Journal Article
%A M. U. Yakhshiboev
%T Relation between one-sided ball potentials
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 736-748
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a8/
%G ru
%F CMFD_2018_64_4_a8
M. U. Yakhshiboev. Relation between one-sided ball potentials. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 736-748. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a8/