Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_4_a8, author = {M. U. Yakhshiboev}, title = {Relation between one-sided ball potentials}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {736--748}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a8/} }
M. U. Yakhshiboev. Relation between one-sided ball potentials. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 736-748. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a8/
[1] H. Bateman, A. Erdélyi, Higher transcendental functions, v. 1, Nauka, Moscow, 1965, (Russian translation)
[2] A. A. Kilbas, “On integral equations of the first kind with logarithmic kernels of arbitrary type”, Rep. Acad. Sci. Belorus. SSR, 21:12 (1977), 1078–1081 (in Russian) | MR | Zbl
[3] A. M. Nakhushev, Fractional Calculus and Its Application, Fizmatlit, Moscow, 2003 (in Russian)
[4] A. G. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series: Elementary Functions, Nauka, Moscow, 1981 (in Russian) | MR
[5] B. S. Rubin, “General method of investigation of continuity for potential-type operators with power-logarithmic kernels on a finite segment”, Bull. Acad. Sci. Arm. SSR. Math., 12:6 (1977), 447–461 (in Russian) | MR | Zbl
[6] B. S. Rubin, One-sided ball potentials and inversion of Riesz potentials with respect to an $n$-dimensional sphere and its exterior, Dep. VINITI, 18.07.84, No. 5150, 1984 (in Russian)
[7] B. S. Rubin, “Inversion of Riesz potentials with respect to an $n$-dimensional sphere and its exterior”, Bull. Higher Edu. Inst. Ser. Math., 1985, no. 6, 81–85 (in Russian) | MR | Zbl
[8] B. S. Rubin, Harmonic analysis of operators commuting with rotations and dilatations in $\mathbb R^n$, Dep. VINITI, 6.01.88, No. 294, 1988 (in Russian)
[9] S. G. Samko, “Generalized Abel equation and an equation with the Cauchy kernel”, Rep. Acad. Sci. USSR, 176:5 (1967), 1019–1022 (in Russian) | MR | Zbl
[10] S. G. Samko, “On generalized Abel equation and operators of fractional integration”, Differ. Equ., 4:2 (1968), 298–314 (in Russian) | MR | Zbl
[11] S. G. Samko, Hypersingular Integrals and Their Applications, Rostov Univ., Rostov-na-Donu, 1984 (in Russian) | MR
[12] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and Derivatives of Fractional Order and Some Their Applications, Nauka i tekhnika, Minsk, 1987 (in Russian)
[13] S. G. Samko, M. U. Yakhshiboev, Relations between one-sided ball potentials via radially singular operators, Dep. VINITI, 16.01.91, No. 172, 1992 (in Russian)
[14] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Mir, Moscow, 1974, (Russian translation)
[15] Kober H., “A modification of Hilbert transforms, the Weyl integral and functional equations”, J. London Math. Soc., 42:1 (1967), 42–50 | DOI | MR | Zbl
[16] Rubin B. S., “Fractional integrals and weakly singular equations of the first king in the $n$-dimensional ball”, J. Anal. Math., 63 (1994), 55–102 | DOI | MR | Zbl
[17] Rubin B. S., Fractional integrals and potential, Addison Wesley Longman, Harlow–Essex, 1996 | MR
[18] von Wolfersdorf L., “Über eine Beziehung zwischen Integralen nichtganzer Ordnung”, Math. Z., 90:1 (1965), 24–28 | DOI | MR | Zbl