Construction of optimal interpolation formulas in the Sobolev space
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 723-735
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, using the discrete analog of the differential operator $\frac{d^{2m}}{dx^{2m}}$, optimal interpolation formulas are constructed in $L_2^{(4)}(0,1)$ space. The explicit formulas for coefficients of optimal interpolation formulas are obtained.
@article{CMFD_2018_64_4_a7,
author = {Kh. M. Shadimetov and A. R. Hayotov and F. A. Nuraliev},
title = {Construction of optimal interpolation formulas in the {Sobolev} space},
journal = {Contemporary Mathematics. Fundamental Directions},
pages = {723--735},
publisher = {mathdoc},
volume = {64},
number = {4},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a7/}
}
TY - JOUR AU - Kh. M. Shadimetov AU - A. R. Hayotov AU - F. A. Nuraliev TI - Construction of optimal interpolation formulas in the Sobolev space JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 723 EP - 735 VL - 64 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a7/ LA - ru ID - CMFD_2018_64_4_a7 ER -
%0 Journal Article %A Kh. M. Shadimetov %A A. R. Hayotov %A F. A. Nuraliev %T Construction of optimal interpolation formulas in the Sobolev space %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 723-735 %V 64 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a7/ %G ru %F CMFD_2018_64_4_a7
Kh. M. Shadimetov; A. R. Hayotov; F. A. Nuraliev. Construction of optimal interpolation formulas in the Sobolev space. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 723-735. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a7/