Construction of optimal interpolation formulas in the Sobolev space
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 723-735

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, using the discrete analog of the differential operator $\frac{d^{2m}}{dx^{2m}}$, optimal interpolation formulas are constructed in $L_2^{(4)}(0,1)$ space. The explicit formulas for coefficients of optimal interpolation formulas are obtained.
@article{CMFD_2018_64_4_a7,
     author = {Kh. M. Shadimetov and A. R. Hayotov and F. A. Nuraliev},
     title = {Construction of optimal interpolation formulas in the {Sobolev} space},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {723--735},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a7/}
}
TY  - JOUR
AU  - Kh. M. Shadimetov
AU  - A. R. Hayotov
AU  - F. A. Nuraliev
TI  - Construction of optimal interpolation formulas in the Sobolev space
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 723
EP  - 735
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a7/
LA  - ru
ID  - CMFD_2018_64_4_a7
ER  - 
%0 Journal Article
%A Kh. M. Shadimetov
%A A. R. Hayotov
%A F. A. Nuraliev
%T Construction of optimal interpolation formulas in the Sobolev space
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 723-735
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a7/
%G ru
%F CMFD_2018_64_4_a7
Kh. M. Shadimetov; A. R. Hayotov; F. A. Nuraliev. Construction of optimal interpolation formulas in the Sobolev space. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 723-735. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a7/