A discrete analog of the Lyapunov function for hyperbolic systems
Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 591-602.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the difference splitting scheme for the numerical calculation of stable solutions of a two-dimensional linear hyperbolic system with dissipative boundary conditions in the case of constant coefficients with lower terms. A discrete analog of the Lyapunov function is constructed and an a priori estimate is obtained for it. The obtained a priori estimate allows us to assert the exponential stability of the numerical solution.
@article{CMFD_2018_64_4_a0,
     author = {R. D. Aloev and M. U. Khudayberganov},
     title = {A discrete analog of the {Lyapunov} function for hyperbolic systems},
     journal = {Contemporary Mathematics. Fundamental Directions},
     pages = {591--602},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a0/}
}
TY  - JOUR
AU  - R. D. Aloev
AU  - M. U. Khudayberganov
TI  - A discrete analog of the Lyapunov function for hyperbolic systems
JO  - Contemporary Mathematics. Fundamental Directions
PY  - 2018
SP  - 591
EP  - 602
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a0/
LA  - ru
ID  - CMFD_2018_64_4_a0
ER  - 
%0 Journal Article
%A R. D. Aloev
%A M. U. Khudayberganov
%T A discrete analog of the Lyapunov function for hyperbolic systems
%J Contemporary Mathematics. Fundamental Directions
%D 2018
%P 591-602
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a0/
%G ru
%F CMFD_2018_64_4_a0
R. D. Aloev; M. U. Khudayberganov. A discrete analog of the Lyapunov function for hyperbolic systems. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 591-602. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a0/

[1] A. M. Blokhin, R. D. Aloev, Energy integrals and their applications to the study of the stability of the difference schemes, Novosibirsk State Univ., Novosibirsk, 1993 (in Russian)

[2] S. K. Godunov, Equations of Mathematical Physics, Nauka, Moscow, 1979 (in Russian)

[3] Aloev R. D., Blokhin A. M., Hudayberganov M. U., “One class of stable difference schemes for hyperbolic system”, Am. J. Numer. Anal., 2:3 (2014), 85–89 | MR

[4] Aloev R. D., Davlatov Sh. O., Eshkuvatov Z. K., Nik Long N. M. A., “Uniqueness solution of the finite elements scheme for symmetric hyperbolic systems with variable coefficients”, Malays. J. Math. Sci., 10:S (2016), 49–60 | MR

[5] Aloev R. D., Eshkuvatov Z. K., Davlatov Sh. O., Nik Long N. M. A., “Sufficient condition of stability of finite element method for symmetric $t$-hyperbolic systems with constant coefficients”, Comput. Math. Appl., 68:10 (2014), 1194–1204 | DOI | MR | Zbl

[6] Bastin G., Coron J.-M., Stability and boundary stabilization of 1-D hyperbolic systems, Birkhäuser, Basel, 2016 | MR | Zbl