Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CMFD_2018_64_4_a0, author = {R. D. Aloev and M. U. Khudayberganov}, title = {A discrete analog of the {Lyapunov} function for hyperbolic systems}, journal = {Contemporary Mathematics. Fundamental Directions}, pages = {591--602}, publisher = {mathdoc}, volume = {64}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a0/} }
TY - JOUR AU - R. D. Aloev AU - M. U. Khudayberganov TI - A discrete analog of the Lyapunov function for hyperbolic systems JO - Contemporary Mathematics. Fundamental Directions PY - 2018 SP - 591 EP - 602 VL - 64 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a0/ LA - ru ID - CMFD_2018_64_4_a0 ER -
%0 Journal Article %A R. D. Aloev %A M. U. Khudayberganov %T A discrete analog of the Lyapunov function for hyperbolic systems %J Contemporary Mathematics. Fundamental Directions %D 2018 %P 591-602 %V 64 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a0/ %G ru %F CMFD_2018_64_4_a0
R. D. Aloev; M. U. Khudayberganov. A discrete analog of the Lyapunov function for hyperbolic systems. Contemporary Mathematics. Fundamental Directions, Contemporary problems in mathematics and physics, Tome 64 (2018) no. 4, pp. 591-602. http://geodesic.mathdoc.fr/item/CMFD_2018_64_4_a0/
[1] A. M. Blokhin, R. D. Aloev, Energy integrals and their applications to the study of the stability of the difference schemes, Novosibirsk State Univ., Novosibirsk, 1993 (in Russian)
[2] S. K. Godunov, Equations of Mathematical Physics, Nauka, Moscow, 1979 (in Russian)
[3] Aloev R. D., Blokhin A. M., Hudayberganov M. U., “One class of stable difference schemes for hyperbolic system”, Am. J. Numer. Anal., 2:3 (2014), 85–89 | MR
[4] Aloev R. D., Davlatov Sh. O., Eshkuvatov Z. K., Nik Long N. M. A., “Uniqueness solution of the finite elements scheme for symmetric hyperbolic systems with variable coefficients”, Malays. J. Math. Sci., 10:S (2016), 49–60 | MR
[5] Aloev R. D., Eshkuvatov Z. K., Davlatov Sh. O., Nik Long N. M. A., “Sufficient condition of stability of finite element method for symmetric $t$-hyperbolic systems with constant coefficients”, Comput. Math. Appl., 68:10 (2014), 1194–1204 | DOI | MR | Zbl
[6] Bastin G., Coron J.-M., Stability and boundary stabilization of 1-D hyperbolic systems, Birkhäuser, Basel, 2016 | MR | Zbl